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Abstract: This article's goal is to explain how heat transfer affects the peristaltic movement of the fractional Jeffrey fluid 
over a permeable media in a non-uniform channel. The consequences of fractional viscoelastic properties of the 
generalized Jeffrey fluid are explored together with the effects of heat transfer, geometric features of the non-uniform 
channel, and peristaltic flow. There is a visual comparison between the two. By means of the suppositions of a long 
wavelength, the analytical solutions of the velocity, pressure gradient, and pressure rise are inspected. According to the 
data, the permeability, Grashof number, wave amplitude, heat source, thermal radiation, and thermal slip all have a 
significant impact on the phenomenon. Additionally, a comparison of the results of an analytical solution with earlier 
literature demonstrates satisfactory agreement.  
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Nomenclature 
  amplitude  

  channel's half-width 

  The half width of the inlet of the  
channel 

 Constant whose value relies on the 
width and depth of the inlet and exit  
as well as the length of the channel 

 Wavelength 

 
Velocity components  

 Permeability 

 
Radiative heat flux 

 
The thermal conductivity 

 
Heat generation coefficient 

 
Temperature distribution 

 The porosity of the porous medium 

 
The fractional calculus of  
order and   

 
Fractional time derivative parameters  

1 Introduction  

Peristalsis is the constant wavelike muscular reduction of 
hollow tubes and biological vessels, for example, the 
esophagus, stomach, intestines, occasionally the ureters, 
and blood vessels. Peristaltic transport describes the 
movement of fluids by peristalsis. Khan et al. [1] have 
researched peristaltic motion in both mechanical and 
physiological contexts. The effects of fractional Maxwell 

fluids on peristaltic flows were evaluated by Bayones et al. 
[2]. The impact of the endoscope and on the peristaltic flow 
was noted by Abd-Alla et al. [3]. Asjad et al. [4] deliberated 
the flow of unstable MHD viscous fluid including carbon 
nanotubes (SWCNTs, MWCNTs) nanoparticles and using 
carboxymethyl cellulose (CMC) as its base fluid. Mainardi 
and Spada [5] examined the fundamental fractional models. 
Qi and Jin [6] proposed the unstable rotational flows of a 
viscoelastic fluid between consecutive cylinders. The 
algorithmic strategy for the unstable flow of a Maxwell 
fluid with Caputo variable coefficients was explored by 
Haque et al. [7]. Carrera et al. [8] demonstrated the 
Maxwell model for non-Newtonian fluids. The new model 
was used by Tripathi and colleagues [9] to illustrate the 
peristalsis-based movement of a viscoelastic fluid via a 
conduit. Guo et al. [10] demonstrated the fractional Jeffrey 
fluid's model. Also, another fractional Maxwell model was 
used by Tripathi [11]. Peristaltic pump phenomena were 
premeditated by Abd-Alla et al. [12]. Guo and Qi [13] 
investigated the electrical peristaltic flow of a viscous fluid. 
Narla et al. [14] were able to precisely determine the 
analytical solutions for the flow of a viscoelastic fluid down 
a rounded channel. Razzaq et al. [15] calculated the heat 
transport analysis of a fractional Maxwell fluid. Some 
recent study on this subject is covered in [16–25]. 

In this study, we investigate the fractional Maxwell model-
based peristaltic transportation of viscoelastic Newtonian 
Jeffery fluid along a porous channel underneath the long 
wavelength and low Reynolds number preconceptions. We 
have talked about the implications of permeability and 
fractional time derivative factors. The constant whose size 
is determined by the channel length and the magnitudes of 
the inlet and outlet, the Grashof number wave amplitude, 
the heat source, the thermal radiation, the ratio of relaxation 
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to retardation times the retardation period, and the current 
findings offer a fundamental comprehension of the physical 
model in addition to being helpful for practical 
applications. 

2 Formulation of the Problem 

The Jeffrey model's fundamental relationship for an 
incompressible fluid is as follows: 

                                                (1) 

                                                  
(2) 

The upper convicted fractional derivative is given by: 

            (3) 

In which 

                                                        (4) 

            (5) 

Here,  represents the gamma function. 

 is termed as the main Rivlin-Ericksen tensor, 

is defined as the velocity gradient, and is the 
velocity vector.  

The crucial relationship of the classical Jeffrey fluid gives 
the correlation existed of the fractional Jeffrey fluid: 

                   (6)    

We consider fractional Jeffrey fluid peristalsis via a 
permeable channel through the parallel to the middle line 
and perpendicular to it (Figure 1). The geometry of the 
wave-propagating tube walls is given by:     

      (7) 

The governing equations of the flow viscoelastic fluid in a 
porous medium are as follows: 

     (8)  

(9) 

     (10) 

                                          (11) 

 
Fig. 1: The problem's geometry. 

This Darcy resistance is apparent from the equation (8) 
that satisfies the formula: 

        (12) 

where,  and  is porosity of the 
porous medium. The changes between the two frames are 
assumed by: 

        

                                   (13)                 

The pertaining boundary conditions are as follows: 

                             (14) 
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                         (15) 

                                    (16) 
The non-dimensional variables include the following: 

                

        

   

   

                                                                                                                 
(17)  

The radiative flux  of radiation is sculpted as follows: 

                                                            (18) 

Volume flow rate  pressure rise , and frictional 
forces' respective non-dimensional expressions are 
produced by: 

                                                       (19) 

                                                    (20) 

                                          (21)  

3 Solution of the Problem 

By means of the dimensionless amounts mentioned above 
and assuming the long-wavelength approximation and low 
Reynolds numbers, the equations of motion assume the 
following form: 

    (22) 

 

                                                     (23) 

                                                   (24) 

The following formulas for temperature distribution, 
velocity, and pressure gradient can be attained: 

                  (25)                                                                                         

                                (26) 

                                           (27)                               

where, 

                                                                     (28) 

                               
(29) 

The equations (32) –(35) contain expressions for the 

unknowns  

 Given in the Appendix  

4 Numerical Results and Discussion  

Numerous values of the fractional Maxwell fluid, fractional 

time derivative parameters,  and  permeability  

Grashof number wave amplitude, , heat source , 

thermal radiation  thermal slip  the ratio of relaxation 

to retardation times  retardation time and the 
dimensions of the inlet and exit were numerically 
calculated in order to analyze the behavior of solutions. 
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Figure 2 illustrates the temperature fluctuations with regard 
to distance  for various physical thermal radiation 

parameters, including ,   and  It has been noted 
that an increase in values results in temperature drops 

over  while it causes increases in 

temperature in the interval  as well it 
increases with increasing of heat source/sink in the interval 

 while it declines with increasing of  in 

the interval  otherwise with the 

increases in  and  cause the reduction in temperature. 
In addition, the temperature dropped as the axis was 
increased, and the boundary criteria were met. 

The pressure gradient  is plotted against in 

figure 3 for different values of    , 

 and . Noting that the peristaltic motion is what 
causes the pressure gradient to oscillate, we can see that it 
has done so across the entire range of axes. It decreases 

with the increasing of  and while it increases 

with the increasing of . Otherwise it declines with the 

increasing of  in the interval  and  it \increases 

with the increasing of wave amplitude  in the interval 

  As well as increasing and decreasing of , 

 and   in the complete range of axis. It is obvious 
that growing thermal slip and thermal radiation exhibit 
oscillatory behavior due to peristaltic motion [26], as we 
can realize, they have oscillated across the whole axis 
range. 

Figure 4 is plotted for various values of  and   

and  It is perceived that the pressure rise  rises 

rapidly with the increase of  and when 

 while it decreases when 

while the it declines with increasing of  and  when 

as well it increases when  
As anticipated, pressure rise results in higher values for 
small volume flow rates and smaller values for large 
volume flow rates. Furthermore, peristaltic pumping arises 
in the region where augmented pumping would otherwise 
occur. 

Figure 5 clarifies the variation of frictional force 

against volume flow rate  for different values of  and 

 , and  It is detected that there is a direct relative 
between frictional force and volume flow rate, i.e. the 

frictional force increases by increasing  , and  

when ,while it declines when 

 in addition it falls by increasing  

when while it increases when 

 when compared to that pressure rise, the 
frictional force similarly behaves in the opposite way. This 
outcome is comparable to that shown in reference [25]. 

 

 

 

 

Fig. 2:  The dissimilarities of the temperature . 
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Fig. 3: The dissimilarities of the pressure gradient . 
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Fig. 4: The dissimilarities of the pressure rise . 

 

 

 

 

Fig. 5: The dissimilarities of the friction forces . 

5 Conclusions 

Since it uses derivatives and integrals, fractional calculus is 
a natural generalization of classical calculus. Although the 
idea of fractions seems strange, it has recently drawn the 
attention of scientists and researchers and has shown to be 
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an effective and popular tool for managing numerous 
physical processes in numerous branches of engineering 
and science. This study presents the impact of the peristaltic 
flow of the fractional Jeffrey fluid with heat transfer 
through a porous media in a non-uniform channel. Within 
long-wavelength and low Reynolds number 
approximations, the effects of Hartman number, the 
fractional Maxwell fluid, and heat transfer on the peristaltic 
flow of a Jeffrey fluid through a medium were assessed. 
For the variables of temperature, axial velocity, and 
pressure gradient, analytical solutions were created. The 
results of this investigation can be summed up as follows: 

1- Temperature decreases as thermal slip and phase 
difference grow while all other factors remain constant. 

2- The scale of  decreases when there is an increase 
in fractional time derivative parameter, permeability 
and Grashof number. 

3- The results of this study should be useful to researchers 
in the domains of science, medicine, engineering, and 
fluid mechanics. 

Appendix 
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