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Abstract: In our previous work, we introduced a clustering algorithm based on clique formation. Cliques, the obtained clusters,

are constructed by choosing the most dense complete subgraphs by using similarity values between instances. The clique algorithm

successfully reduces the number of instances in a data set without substantially changing the accuracy rate. In this current work,

we focused on reducing the number of features. For this purpose, the effect of the clique clustering algorithm on dimensionality

reduction has been analyzed. We propose a novel algorithm for support vector machine classification by combining these two techniques

and applying different strategies by differentiating the clique structures. The results obtained from well known data sets confirm the

compatibility of clique clustering algorithm with dimensionality reduction.

Keywords: clique clustering, classification, dimensionality reduction, machine learning, support vector machine

1 Introduction

Machine Learning (ML) is one of the main stream
research topics and can be thought as a collection of
algorithms which allows one to have predictions without
explicitly coding. Ideally, ML is used by running
algorithms (so-called “machines”) to learn automatically
from observed data (so-called “training data”) and to
predict the outcomes of future decisions. The
performance of algorithms is generally measured by their
accuracy rates to predict unseen data (the so-called “test
data”). ML algorithms have wide range of applications,
such as image processing (e.g., fMRI scans, face
detection), speech recognition (e.g., dictation,
transcription), text categorization (e.g., email filtering),
health sciences, engineering, social networks, business
operation patterns, financial markets and many others
(e.g., see [1], [2], [3]).

ML is generally divided into three categories;
unsupervised, supervised and reinforcement learning
(e.g., clustering, classification, and dynamic
programming, respectively). In the last decade, a blended
approach was observed as semi-supervised learning (see
[4]) which is a union of supervised learning and
unsupervised learning. Similarity-based approaches have
been the most popular research topics in recent years

among semisupervised learning techniques (see [5], [6],
[7] and references therein).

In our previous paper [7], we introduced an algorithm
which uses a similarity function to reduce the size of the
data set by clustering the data based on “clique”
formation. The cliques are being used in random matrix
theory, and in recent years, this concept is also applied in
clustering algorithms (for example, [8], [9], [10], [11]).
For more details, we direct the reader to our original
article [7], and brief information on the clique clustering
algorithm will be given in Section 2.

Machine Learning algorithms for supervised learning
are generally divided into two broad categories based on
their purpose; classification ([12]) and regression ([13]).
Classification algorithms predict a class label among the
categorical set of labels, whereas regression algorithms
predict a class value which is assumed to be a continuous
data. As in our previous paper, we will focus on
classification algorithms, and Support Vector Machines
will be used.

Support vector machine (SVM) is a classification
algorithm which is used with great success in various
fields ([14], [15], [12]). Improving SVMs with different
strategies is a very active research topic; it is possible to
use SVMs on pre-processed data after using clustering
algorithms (see, for example, [16], [17], [18], [19], [20],
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[21], [22]). The common idea of all these approaches is to
obtain comparable performance with reduced training
data set size and with less number of support vectors. A
short introduction to SVMs is also provided in Section 3.

The aim of this paper is to investigate the
compatibility of our clique clustering algorithm with the
most common dimensionality reduction method, known
as recursive feature elimination (RFE). Generally, in
many applications, data is provided in tabular form. The
clique clustering algorithm provides a reduction in the
number of rows of this data, and the dimensionality
reduction algorithms provide a reduction in the number of
columns (see Section 4). Therefore, the combined effect
will reduce the data from both sides, with accuracy rates
comparable to those of the machine learning algorithms
as of the original data set, providing a more efficient
model.

We tested our new method, on well-known data sets
and provided the analysis of results. The results confirm
the compatibility of clique-clustering algorithm with
dimensionality reduction techniques. In order to obtain
comparative results, 4 data sets from our previous paper
are used, which have sufficiently many columns, and 4
new data sets are included to provide sufficient evidence.
A discussion of the results can be found in Section 5.

2 Clique Clustering

Clustering is mainly a type of unsupervised machine
learning technique, and is used to reveal patterns in the
given data set, mainly by grouping similar observations.
One of the well-known such algorithm is k-Nearest
Neighbours. In semi-supervised ML algorithms,
clustering techniques are combined with various
supervised ML algorithms to improve the performance.

The term “cluster” does not have a precise definition,
and there are different techniques to generate clusters that
lead to different algorithms. The common idea for all of
them is to group (or categorize) the data based on some
measures of similarity or distance. In our previous paper,
we showed that the clique clustering technique is an
effective way to obtain clusters.

The clique, is defined as a complete subgraph (of an
undirected graph), and in our approach, cliques are
calculated from the associated graph of the data where the
vertices denote the instances and the edges denote the
similarities between instances. Then, by using a threshold
value, we obtain the subgraph on which cliques are
formed with an heuristic approach. We direct the reader to
[7] for details and for an example calculation with
visualizations. Here, we include the algorithm for the
convenience of the reader. For the algorithm, t denotes a
chosen threshold value, sim(xi, xj) denotes a similarity
function between the data points xi and xj , and B
denotes the set of index pairs (i, j) for which
sim(xi, xj) ≥ t.

2.1 Clique Clustering Algorithm

Input: B, t, sim(xi, xj).
Output: List of Cliques, L.

I.Let B denote the ordered list of all pairs (i, j) with
sim(xi, xj) ≥ t, for a given threshold t, and this list
is ordered by the similarity values from largest to
smallest.

II.Set L := [ ] and B0 := B for initialization.
Repeat until B0 = ∅ :

(i)Let (i, j) ∈ B0 be the first element (i.e., the pair
with the highest similarity value).

(ii)Consider the sets
Ai = {k | (i, k) ∈ B0 or (k, i) ∈ B0} and Aj

similarly, and then form their intersection for
possible elements of the clique; A = Ai ∩ Aj .
Sort A as an ordered list by similarity values from
largest to smallest according to sim(xi, xk) for
i < j and k ∈ A.

(iii)Set A0 := A for initialization
Repeat until A0 = ∅

–Choose k ∈ A0 as the first element (i.e., with the
largest similarity value of sim(xi, xk)).

–A0 := A0\{k}.
–Ak := {ℓ ∈ A | (k, ℓ) ∈ B0 or (ℓ, k) ∈ B0}.
–Compare (as sets) A ∪ {i, j} and Ak ∪ {k}, and

find any missing elements, if any:
D :=

(

A ∪ {i, j}
)

\
(

Ak ∪ {k}
)

–Update A and A0 as A := A\D and A0 := A0\D.
–Next.

(iv)L := Append(L, [A]) update the list L.
A clique is obtained, A, and added to the list of
cliques. Now, we will remove from B0 any pair
associated with clique vertices.

(v)For each k ∈ A, set
Rk = {(k, ℓ) | (k, ℓ) ∈ B0} ∪ {(ℓ, k) | (ℓ, k) ∈
B0}.

(vi)R = ∪k∈ARk.
(vii)B0 := B0\R.

(viii)Next.
III.Return L.

We distinguish two types of clique: homogeneous
cliques and heterogeneous ones. For an homogeneous
clique type, we consider the ones consisting of
observations belonging to the same class label. Similarly,
if a clique includes observations from more than one class
label, it is considered as an heterogeneous clique type.

After the cliques are obtained, we reduce the number
of observations in the data set before using any
classification algorithms. The idea of reducing the
number of data is to reduce the computation time required
by the machine learning algorithm to process the training
data. For this purpose, we previously introduced three
different strategies; Centers of Cliques-SVM (CC-SVM),
Homogeneous Cliques Removed-SVM (HOM-R-SVM),
and Heterogeneous Cliques Removed-SVM
(HET-R-SVM). As before, in this note, we will use only
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SVM as a classification algorithm with numerical data.
These three strategies are also summarized below for the
reader’s convenience.

–Centers of Cliques-SVM (CC-SVM) Algorithm:
The centers of all instances within the clique are
calculated for each class. For a homogeneous clique,
instead of taking all the data, we consider only its
center as one observation. For the non-homogeneous
(i.e., heterogeneous) one, the number of data is
reduced to the number of the class labels observed
within the clique for training.

–Homogeneous Cliques Removed-SVM (HOM-R-SVM)
Algorithm:
Before using the classification algorithm (e.g., SVM),
we remove all homogeneous cliques. Therefore, only
heterogeneous cliques will be considered, and their
centers will be used for the classification. If the aim of
using the data is to distinguish the heterogeneous
types (for example, to detect anomalies), then this
algorithm might be more useful.

–Heterogeneous Cliques Removed-SVM (HET-R-SVM)
Algorithm:
This is the opposite of the HOM-R-SVM Algorithm;
we remove all heterogeneous cliques before training
the SVM and only homogeneous cliques are
considered. This method is more useful if cliques in
the data are supposed to be well separated by class
labels, and the heterogeneity is due to noise or data
errors.

3 Support Vector Machines

Support Vector Machine (SVM) is an algorithm used for
classification in ML [23]. For ML algorithms, the data are
first divided into test and training splits. Then, using the
training data set, SVM builds hyperplanes to separate the
data into categories (mostly called classes). SVMs were
developed by Vapnik and Chervenenkis in 1974 (see [24])
and are still the most popular ML algorithms for
classification. For recent developments and improvements
on SVMs see [25], [26], [27], and references therein.

To achieve data classification, SVM aims to find the
best hyperplane by maximizing the distance (called
margin) between the hyperplane and the closest data
points from each class.

When the data set is n dimensional, the optimization
problem can be given as:

Minimize ‖w‖ subject to yi(xi·w−b) ≥ 1 for i = 1, 2, . . . , k

where w is a normal vector to the hyperplane, yi is either
−1 or 1 each indicating the class to which the point xi

belongs to. Here, the equation of the hyperplane is
assumed to be given as x · w + b = 0, explaining the
constant coefficient b. In the articles [12,28], one may
find details for a comprehensive and complete account of
the underlying convex optimization.

Another advantage of the SVM is its applicability even
when the data is not linearly separated. For this, a kernel
function K(xi,xj) can be used to transform the data into
a linearly separable space, that is, the data are transformed
into a higher-dimensional Euclidean space. In Table 1, the
most commonly used kernel functions are listed.

Table 1 Common kernel functions

Linear: K(xi,xj) = 〈xi,xj〉

Polynomial: K(xi,xj) = (γ〈xi,xj〉 + r)d

Gaussian Radial Basis (rbf): K(xi,xj) = e
−γ||xi−xj ||2

Sigmoid: K(xi,xj) = tanh(γ〈xi,xj〉 + r)

In our study, all of the kernel functions listed in this
table are used, and the accuracies of the resulting SVMs
are calculated to find the best kernel function representing
the data (indeed, to find the best separating hypersurface).
In real life applications, the parameters of these kernel
functions (also called hyper-parameters) can be fine tuned
for better performance. The default parameters for the
kernel functions are defined as;
γ = 1/(n s2), r = 0, d = 3, where xi ∈ R

n and s2

denotes the variance of the set {x1, . . . ,xk}.

4 Dimensionality Reduction

In machine learning, similar to other problems with
sampling and modeling, in order to obtain better results, it
is common to start with higher-dimensional data and then
remove irrelevant features ([29,30]). When considering
more dimensions, to be able to obtain reliable results, the
number of observations should also be increased
exponentially (with respect to the number of features
observed). This brings, other than the increase in the size
of data, an undesired effect which causes the inefficiency;
requiring more computation time and more power.
Moreover, insignificant features contribute not much on
the performance of the model. This behavior is commonly
known as the “curse of dimensionality”.

To remedy this problem, several techniques are
introduced in the literature, such as “low variance filter”,
“forward feature selection”, “backward feature
elimination”, “factor analysis”, “principal component
analysis (PCA)”, “independent component analysis”,
“random forest”, “t-SNE”, “UMAP”, “ISOMAP”. A
comparative review of some dimentionality reduction
algorithms and their limitations were studied in [31], [32].
Another aspect of dimensionality reduction is the
visualization and interpretation of the model.

In this study, our aim is to investigate the
compatibility of the clique-clustering algorithm with a
dimensionality reduction method. For this reason, we will
focus on the most commonly used technique; “Recursive
Feature Elimination” (RFE) which is also referred in the

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


842 U. Madran, D. Soyoğlu: Clique Clustering with Dimensionality Reduction

literature as backward feature elimination. That is, we
will combine the clique-clustering algorithm with RFE by
reducing the number of features, and then use SVM as a
classification. Hence, the data set will be reduced not only
with the number of instances but also with the number of
features to reduce the computation time, without
sacrificing much on the performance of the model.

4.1 RFE

Recursive Feature Elimination (RFE) is one of the most
popular and successful feature selection algorithm. In this
algorithm, first, the model is trained by considering all the
features given in the data set. After training the model, the
RFE algorithm removes the least important feature
considering the performance of the model with the
remaining features on the test data. This process is
repeated, until the desired number of features remains.
This can be done by eliminating one feature at a time or
more features at each iteration, depending on the
application and the needs. In this paper, we used the
default behaviour; eliminating one feature at a time.

To correctly identify the importance values of the
features, the features must be scaled. This is achieved by
transforming them to their standardized values, i.e.,
zi = xi−x̄

s
. This is implemented in the code with the

StandardScaler() from the preprocessing

module in the scikit-learn library. The reason for
considering standardized values, instead of other scaling
methods (such as normalize, or MinMaxScaler), is
to obtain a more robust analysis in which outliers should
have a small effect on performance.

4.2 Implementation

This section includes a brief overview of the proposed
methods and their parameters. The results will be given in
the next section (Section 5) by comparing the
performance of each proposed algorithm.

For this current study, we ported our model to Python
and used the scikit-learn library (ver. 1.0.2 [33]), our
previous work had been run on R-Software with ‘e1071’
package. All data sets are standardized by
StandardScaler() and divided into “training” and “test”
splits with test size equal to 30%, and with stratification
of the target variable, i.e., class labels. Moreover, for each
data set, we run 5 random splits and the average scores
are reported. For all SVM runs, the default parameters are
used so that the results can be easily compared with the
previous ones without any bias.

Moreover, for each data set, different threshold values
(80%, 85%, 90%, 95%) are considered for clique
formations. With t = 80%, there are more cliques formed
for most of the data sets, and the data size is reduced
almost to tenth of the original data. With only a few

number of data remaining, the performance of SVM is
significantly dropped. Depending on the characteristics of
the data sets, other threshold values reach comparable
performance with the original SVM with reduced data
size. The other extreme value, t = 95%, limits the clique
formation for most of the data sets, and hence, the
reduction of the data size is significantly limited.

Also, for each data set, all possible SVM kernels
mentioned in Table 1 are considered and the best
performing kernel for the standard SVM is chosen as a
reference and it is used for all other algorithms for
comparison (see below tables). Since, the last 4 data sets
are new to clique clustering algorithms, here we provide
the accuracy scores of each algorithm (see Tables 2, 3, 4),
for the convenience of the reader. We also include the
results for the other 4 data sets for completeness.

Table 2 Accuracy scores of CC-SVM vs Std. SVM

Data Set t ker n nred SVM CC

Wine 0.95 rbf 124 117.8 0.9963 0.9926

Sonar 0.95 rbf 145 139.2 0.8317 0.8286

Ionoshp. 0.95 rbf 245 163.4 0.9472 0.9396

Vehicle 0.95 rbf 592 401 0.7614 0.7504

Divorce 0.9 poly 119 61.6 0.9882 0.9725

Musk 0.95 rbf 333 251 0.9133 0.9007

Parkins. 0.95 rbf 168 145.8 0.8333 0.8028

Spect 0.8 rbf 186 87 0.8469 0.7901

Table 3 Accuracy scores of HET-R-SVM vs Std. SVM

Data Set t ker n nred SVM HET-R

Wine 0.95 rbf 124 117.8 0.9963 0.9963

Sonar 0.95 rbf 145 139.2 0.8317 0.8286

Ionoshp. 0.95 rbf 245 160.2 0.9472 0.9396

Vehicle 0.95 rbf 592 237.8 0.7614 0.7024

Divorce 0.9 poly 119 61.6 0.9882 0.9725

Musk 0.95 rbf 333 225.4 0.9133 0.8685

Parkins. 0.95 rbf 168 39.6 0.8333 0.7944

Spect 0.8 rbf 186 66.6 0.8469 0.7901

It must be noted that, for an individual proposed
algorithm with clique clustering, better accuracy scores
and more reduced data sets are also observed by using
smaller threshold values. For easy comparison, we
include here the same threshold values for each algorithm
for the same data set. An example is better to see this
comparison and allows us explain why the discrepancy
happens here, mainly due to high number of cliques being
removed.

As can be seen in Table 5 for the Wine data set, with
the CC-SVM algorithm, t = 0.80 provides sufficient
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Table 4 Accuracy scores of HOM-R-SVM vs Std. SVM

Data Set t ker n nred SVM HOM-R

Wine 0.95 rbf 124 111.6 0.9963 0.9926

Sonar 0.95 rbf 145 133.8 0.8317 0.8254

Ionoshp. 0.95 rbf 245 134.8 0.9472 0.9415

Vehicle 0.95 rbf 592 318.6 0.7614 0.6953

Divorce 0.9 poly 119 39 0.9882 0.9686

Musk 0.95 rbf 333 192.6 0.9133 0.8140

Parkins. 0.95 rbf 168 131.6 0.8333 0.8000

Spect 0.8 rbf 186 62 0.8469 0.7877

performance with only 17 clique centers (ncen) and more
accurate rates with t = 0.90 with cliques of half size of
the data. Here, nred (i.e., ncen, nhom, nhet, respectively for
each algorithm) denotes the average number of instances
used to train SVM, and relscore denotes the ratio of the
performance of the given algorithm to the performance of
the standard SVM when full data set is used. On the other
hand, the cliques formed for t = 0.80 are mostly
homogeneous ones, and for the HOM-R-SVM algorithm
only 9 clique centers (nhom) remains, which is clearly
insufficient to get reliable conclusions.

Based on our experiments, we recommend as a rule of
thumb that, threshold value should be chosen so that the
number of centers obtained should be about half the size
of the original data. For the Wine data set, t = 0.90 will
be enough for CC-SVM and HET-R-SVM, but a higher
value is recommended for HOM-R-SVM. Indeed,
t = 0.925 gives the optimum results with nred = 65 and
relscore = 0.9777.

4.3 RFE algorithms

For each data set, first, standard SVM and clique related
algorithms are run to obtain the reference performance
values. Moreover, after this initial run, the importance
values of each feature is calculated. To obtain reliable
results, each feature column is scaled with standardized
scores.

• RFE-CC-SVM:

Step 1: Apply the clique clustering algorithm (see
Section 2).
Step 2: Obtain the centers of the cliques.
Step 3: Standardize the values of all data to identify the
most important features.
Step 4: Using the given ratio for RFE, select the most
important features, recursively.
Step 5: Apply SVM with selected features and using only
centers of cliques, together with instances that do not
belong to any clique.

• RFE-HET-R-SVM:

Step 1: Apply the clique clustering algorithm.
Step 2: Obtain the centers of the cliques after removing

all heterogeneous cliques.
Step 3: Transform the centers of the cliques to their
standardized scores to find the most important features.
Step 4: By using the given ratio for RFE, select the
features, recursively.
Step 5: Apply SVM with selected components and using
only centers of homogeneous cliques together with
instances that do not belong to any clique.

• RFE-HOM-R-SVM:
Step 1: Apply the clique clustering algorithm.
Step 2: Get the centers of the cliques after removing all
homogeneous cliques. Note that, for each clique, there
will be at least 2 centers, one for each class label
appearing in the clique.
Step 3: Obtain the standardized scores of the centers of
cliques.
Step 4: By using the given ratio for RFE, select the
features, recursively.
Step 5: Apply SVM with selected components and using
only centers of heterogeneous cliques together with the
instances that do not belong to any clique.

The results are given as bar graphs in Section 5 by
comparing the performances of RFE-75%, RFE-50%, and
RFE-25% within each algorithm. Note that the values
75%, 50%, and 25% are generic values chosen to test the
compatibility of clique clustering algorithms, and specific
values can be used for different data sets, depending on
their structure and the needs for the ML task.

5 Results and Discussion

In order to analyze the performance of the proposed
methods we consider 8 publicly available data sets from
UCI database. The first four data sets have also been used
in our previous study (the ones chosen here are those with
more than 10 attributes) and are included here for
comparative results ([7]). Moreover, 4 new data sets have
been studied, having attribute sizes varying between 23
and 167, as listed below. As mentioned earlier, all data
sets are chosen so that each has numerical attributes only.
The data sets also represent different areas of life with
various properties; for example, Spect data set consists of
only binary data. Divorce data set consists of
questionnaire responses scaled from 0 to 4 (integer
values).

For the “Ionosphere” data set, the second attribute is
constant for all instances, so this attribute is completely
removed before using the data. For the “Musk” data set,
clean1.data is used, as summarized above. For the
“Spect” data set, the files SPECT.train and
SPECT.test are merged and random splits are formed.

It has been observed that RFE-CC-SVM-50%
performs quite well, on average, with all data sets
considered. As expected, the RFE-25% method is quite
unstable compared to the larger values. Nevertheless, it
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Fig. 1 Relative performance rates of RFE-CC-SVM
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Table 5 An example for the effect of different threshold values.

Data ker t n SVM ncen relscore nhet relscore nhom relscore

Wine rbf 80 124 0.9963 16.6 0.9517 11.4 0.8513 8.8 0.5651

Wine rbf 85 124 0.9963 28.6 0.9628 25 0.9554 10.2 0.5056

Wine rbf 90 124 0.9963 61.4 0.9926 60.2 0.9926 31.2 0.9033

Wine rbf 95 * 124 0.9963 117.8 0.9963 117.8 0.9963 111.6 0.9963

Table 6 Number of Features used with RFE

Data Set aAll a75% a50% a25%

Wine 12 9 6 3

Connectionist Bench
60 45 30 15

(Sonar All)

Statlog (Vehicle) 18 13 9 4

Ionosphere 33 24 16 8

Divorce 54 40 27 13

Musk 166 124 83 41

Parkinson 45 33 22 11

Spect 22 16 11 5

Table 7 Summary of Data Sets

Data Set n a c Area

Wine 178 12 3 Physical

Connectionist Bench
208 60 2 Physical

(Sonar All)

Statlog (Vehicle) 846 18 4 Physical

Ionosphere 351 33 2 Physical

Divorce 170 54 2 Life

Musk 476 166 2 Physical

Parkinson 239 45 2 Life

Spect 267 22 2 Life

should be mentioned that, the scale of the bar graphs are
set for their performances between 0.75 and 1.05 to
ensure the visibility of the comparisons. The minimum
performance is observed for the Vehicle data set with 82%
at RFE-25%. For RFE-50%, the minimum performance is
observed with the Spect data set with 93% relative
performance, still a very good performance with half of
the features. It should also be noted that for the Spect data
set, t = 0.80 was used and nred

n
= 87

186 = 0.4677, with
RFE-50% the ratio of all the data used is reduced to
0.2339. In summary, with only 23.29% of the original
data, we received 93% of the corresponding performance.

The second most successful model proposed is the
RFE-HET-R-SVM algorithm based on the average
performance rates for the given data sets. Indeed, the
performance of RFE-HET-R-SVM is the same as the
performance of RFE-CC-SVM for 2 data sets (Wine and
Sonar), slightly better for 3 data sets (Ionosphere,
Divorce, and Spect) and slightly worse for the remaining
3 data sets (Vehicle, Musk, and Parkinson). It is also

interesting to note that, for the Divorce data set, both
RFE-HOM-R-SVM and RFE-CC-SVM give the same
performance ratios for all RFE parameters, and only
RFE-HET-R-SVM gives different performance ratios.

Even though RFE-HOM-R-SVM performs with the
least average relative score, for 3 data sets (Wine,
Ionosphere, and Spect) it performs slightly better than
RFE-CC-SVM and RFE-HET-R-SVM at 50% parameter.
Moreover, it should also be noted that, among all the
algorithms proposed, the CC-SVM algorithm has the
lowest number of training data, providing the best
reduction in the size of the training data.

5.1 Closing remarks and future work

In conclusion, based on the results represented in this
note, it has been showed that the clique clustering
algorithms are compatible with RFE dimensionality
reduction technique. It is worth further analyzing the
other dimensionality reduction techniques, such as PCA
and also other ML algorithms, such as Random Forest.
Another direction to expand this study could be to
analyze the performance of the clique clustering
algorithm after fine-tuning the parameters of SVMs (or
other ML algorithms). That is, the clique-clustering
algorithm can be used after hyper-parameter tuning with
the best parameters obtained for each data set.

Furthermore, in our previous study and also in this
study, we focused only on the classification problem. It is
also interesting to analyze the performance of the clique
clustering algorithms for regression problems.

For future work, we would like to expand these
studies to larger data sets by partially using clique
clustering on the smaller subsets and use them repeatedly
until data reduction is achieved to an acceptable level. If
this is achieved, then the computation time of the cliques
will be substantially reduced, and this method can be used
effectively with many machine learning algorithms.
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analysis and investigation: Uğur Madran, Duygu
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