
Applied Mathematics & Information Sciences Applied Mathematics & Information Sciences 

Volume 17 
Issue 6 Nov. 2023 Article 11 

11-1-2023 

Correspondence of OOP Refactoring Techniques in PL\SQL Correspondence of OOP Refactoring Techniques in PL\SQL 

Environment: A Case Study of Agile Project Code Environment: A Case Study of Agile Project Code 

Khitam Mashaqbeh 
Department of Software Engineering, Information Technology, Zarqa University, Zarqa, Jordan, 
ijebreen@zu.edu.jo 

Issam Jebreen 
Department of Software Engineering, Information Technology, Zarqa University, Zarqa, Jordan, 
ijebreen@zu.edu.jo 

Ahmad Nabot 
Department of Software Engineering, Information Technology, Zarqa University, Zarqa, Jordan, 
ijebreen@zu.edu.jo 

Ahmad Al-Qerem 
Department of Computer Science, Information Technology, Zarqa University, Zarqa, Jordan, 
ijebreen@zu.edu.jo 

Amer Abu Salem 
Department of Computer Science, Information Technology, Zarqa University, Zarqa, Jordan, 
ijebreen@zu.edu.jo 
Follow this and additional works at: https://digitalcommons.aaru.edu.jo/amis 

Recommended Citation Recommended Citation 
Mashaqbeh, Khitam; Jebreen, Issam; Nabot, Ahmad; Al-Qerem, Ahmad; and Abu Salem, Amer (2023) 
"Correspondence of OOP Refactoring Techniques in PL\SQL Environment: A Case Study of Agile Project 
Code," Applied Mathematics & Information Sciences: Vol. 17: Iss. 6, Article 11. 
DOI: https://dx.doi.org/10.18576/amis/170605 
Available at: https://digitalcommons.aaru.edu.jo/amis/vol17/iss6/11 

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for 
inclusion in Applied Mathematics & Information Sciences by an authorized editor. The journal is hosted on Digital 
Commons, an Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo, 
u.murad@aaru.edu.jo. 

https://digitalcommons.aaru.edu.jo/amis
https://digitalcommons.aaru.edu.jo/amis/vol17
https://digitalcommons.aaru.edu.jo/amis/vol17/iss6
https://digitalcommons.aaru.edu.jo/amis/vol17/iss6/11
https://digitalcommons.aaru.edu.jo/amis?utm_source=digitalcommons.aaru.edu.jo%2Famis%2Fvol17%2Fiss6%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.aaru.edu.jo/amis/vol17/iss6/11?utm_source=digitalcommons.aaru.edu.jo%2Famis%2Fvol17%2Fiss6%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.elsevier.com/solutions/digital-commons
https://www.elsevier.com/solutions/digital-commons
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo


Appl. Math. Inf. Sci. 17, No. 6, 993-1002 (2023) 993

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/170605

Correspondence of OOP Refactoring Techniques in

PL\SQL Environment: A Case Study of Agile Project

Code

Khitam Mashaqbeh1, Issam Jebreen1,∗, Ahmad Nabot1. Ahmad Al-Qerem2, and Amer Abu Salem2

1Department of Software Engineering, Information Technology, Zarqa University, Zarqa, Jordan
2Department of Computer Science, Information Technology, Zarqa University, Zarqa, Jordan

Received: 7 Jun. 2023, Revised: 21 Sep. 2023, Accepted: 23 Sep. 2023

Published online: 1 Nov. 2023

Abstract: scrum is one of the most popular agile approaches for developing software, which has code quality challenges that affect

software functionality, maintainability, reliability, usability, efficiency, and portability. However, many techniques are applied to enhance

code quality by analyzing and reviewing the code using code conventions, standards, and refactoring. In the Scrum development

framework, handling code quality issues requires focusing on the practices that cause such issues (i.e., short testing volume). Therefore,

this study aims to investigate how refactoring affects scrum source code quality and code maintainability. This study followed an

experimental approach, including a case study for a large and complex Oracle PL/SQL software program through its development

phase. The source code of the chosen sprint is analyzed to evaluate its quality and identify the probability of code smell existence. Nine

refactoring techniques are applied to the collected data to identify code smells for the chosen PL/SQL software. The study findings

show that choosing a suitable refactoring technique positively affects the maintainability of sprint code.

Keywords: Refactoring, Maintainability, Scrum, PL/SQL, Code smells

1 Introduction

The business environment is changing rapidly, while
unpredictable market needs to make traditional
development unsuitable for such an environment. Thus,
enterprises face challenges in coping with evolving
changes and requirements while managing their
projects [49]. Agile is an adaptive model to manage
uncertainty and unforeseeable changes in the business
environment that relies on continuous customer
collaboration with the development team by utilizing
individual skills using productive interaction to develop
software products. Recently, agile methods have been
widely adopted to improve software development
efficiency, change flexibility, time-to-market, and
customer satisfaction [31]. The organizational necessity
for agility paved the way for the evolution of many
development frameworks related to agile principles, such
as Scrum, XP, and Kanban. All these frameworks are
under the agile methodology umbrella, where one or two
are used according to the project characteristics. Amongst
all, scrum is the most popular framework in software

development [24, 35]. Recent studies surveyed industry
professionals in an agile scrum who showed notable
success in using such approaches for software
development compared to traditional development
approaches [19, 26]. However, many challenges and
issues face enterprises while using scrum, mainly quality
matters [34]. Scrum code quality is one of the main issues
that affect scrum quality [30, 33, 39]. Also, it [5] pointed
out that very few studies identified agile practices
concerning quality attributes and how they are enhanced
to deal with quality issues. In addition, refactoring is
considered one of the main suggested processes to
improve code quality. However, there is limited
knowledge of the effect of refactoring on internal quality
attributes [13]. Moreover, the literature does not cover the
impact of refactoring on scrum code quality. Neither
study the Refactoring techniques in PL\SQL related to
refactoring catalog used in object-oriented programming
(OOP). Scrum is used widely in different project
environments that are susceptible to change. The
continuous change in the software requirements

∗ Corresponding author e-mail: ijebreen@zu.edu.jo

c© 2023 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/170605


994 K. Mashaqbeh et al.: Correspondence of OOP Refactoring Techniques in PL...

necessarily means a difference in the software source
code. Thus, code quality significantly affects scrum
software quality characteristics, such as maintainability,
reliability, extensibility, and modifiability [39].
Consequently, enhancing code quality is the main
challenge for many enterprises using Scrum for software
development. This study investigates the effect of
refactoring techniques on code quality to measure code
maintainability for software products developed using the
Scrum framework. Therefore, this study seeks to answer
the following research questions:
RQ1: What are corresponding OOP refactoring
techniques in PL\SQL?
RQ2: How do refactoring techniques affect the code
quality for software developed in PL\SQL?
This study is structured as follows: the study introduction
is presented in the first section of this study. Then, a
review of the existing literature on the agile methods,
scrum framework, scrum practices, scrum code quality,
and refactoring was conducted and presented in the
second section. Next, the third section discusses the study
methodology. Then, the experimental case study is
explained, and its results are presented and discussed in
the fourth section. Finally, study limitations and
conclusions were introduced in the last section.

2 Background

2.1 Agile Model

Agile is a project management principle introduced in
2001 that concerns responding to project changes by
utilizing individuals’ skills and productive interactions to
develop working software through continuous customer
collaboration [9]. The agile model stands on development
through a series of increments, each launching a
release [6]. There are a number of the developed
frameworks under the agile umbrella, including Dynamic
System Development Method (DSDM), Lean
Development (LD), Extreme Programming (XP), Scrum,
Adaptive Software Development, Crystal, Feature Driven
Development (FDD), and Kanban where each framework
has its characteristics that suit project
features [3, 7–9, 37, 45, 48].

2.2 Scrum framework

According to the Project Management Institute [36], two
of the top three reasons for project failure are changing
organizational priorities and project objectives. This
clarifies the enterprises’ orientation towards agile
methodology, especially the scrum framework, where
adapting changes is the main feature of this
approach [20]. Schwaber (1997) defined scrum as a
process that treats significant system parts development as

a controlled black box [44]. This process increases
flexibility to meet the initial requirements and respond to
any emerging or lately discovered needs throughout the
development process. Scrum is a simple structure to
manage complex projects, improve communication
among project stakeholders, and adapt to a rapidly
changing environment [45]. In addition, it aligns the
development process with customer needs, improves team
effectiveness by adjusting to the unpredictable
environment, and encourages generating ideas and then
implementing them [15]. The scrum framework consists
of three parts, as shown in Figure 1.

Fig. 1: Scrum framework parts

Figure 1 shows the three main parts of the scrum
framework; the roles part includes product owner, scrum
master, and scrum team; the artifacts is the second part
which includes product backlog, sprint backlog, and the
increments; while the third part is part of the events that
consist of the sprint, sprint planning, daily scrum, sprint
review, and retrospective. Each item of the three regions
has its work in the development process, as
discussed [10, 17, 32, 46].

2.3 Scrum Practices

The process inside the scrum framework starts with a
business expert called the Product owner, who takes
stakeholders’ inputs (i.e., user stories). Then, product
backlogs containing prioritized required features are
created [12]. After that, the Scrum master (i.e., a
professionally experienced person in Scrum principles)
launches the development process by conducting a sprint
planning meeting with a cross-functional team Scrum
development team. He coaches the team to ensure that
scrum principles and rules are applied [42]. The group, in
turn, picks the most prioritized feature from the product
backlog and breaks it down into tasks to be included in
the sprint backlog [12]. Then the process of developing
this feature starts through a closed cycle called sprint.
During the sprint, there is a 15-minute daily scrum
meeting to review what is done and what is in progress.

c© 2023 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 17, No. 6, 993-1002 (2023) / www.naturalspublishing.com/Journals.asp 995

At the end of the sprint, an Increment of the product is
delivered for the product owner to be tested to get the
required feedback [42]. Any suggested enhancement is
added to the product backlog by modifying the relevant
requirement item or adding a new article. After that, a
sprint review is held between the team and all interested
parties to review what, how, and adapt what will be built
in the next sprint. A sprint retrospective is also held at the
end of the sprint to review its process and find
improvement opportunities [46]. Finally, a product is
delivered to its customer at the end of all sprints.

Fig. 2: Scrum Practices

As with any development framework, scrum has some
issues and challenges; as stated by [33], those who
performed a systematic literature review on scrum
problems were categorized into four groups: people,
process, project, and organization. One of the process
problems is that agile does not have separate coding and
testing phases concluded that written code should be
tested and debugged during the iteration. Also, it [40]
pointed out three key challenges encountered in the scrum
process: longer user feedback loops, no user involvement
in testing, and a lack of quality products. Moreover, [22] a
systematic literature review about the challenges in agile
software development, concluded that main challenges
include team management, requirement prioritization,
documentation, progress monitoring and feedback,
organization, process, changing requirements, and
over-scoping conditions significantly affect software
quality. In addition, it [5] mentioned the importance of
studying and investigating the effect of agile practices on
software quality attributes, such as functionality,
reliability, maintainability, usability, efficiency, and
portability. They confirmed the need to study how to
improve quality through agile practices. While [29]
recommended enhancing scrum software quality by
enforcing code reviews. Also, to ensure quality assurance
in the scrum, scrum teams and team leaders, and
compliance to standards regardless of time pressures and
tight deadlines. Furthermore, it [14] concluded that tight
scheduling constraints might put off or prevent significant
redesigns. Therefore, avoiding the creation of a reliable
and stable product with flexibility is required to respond
to rapid market changes. Thus, they suggested that the
deferring of refactoring caused this prevention.
Consequently, code quality is reduced, and refactoring

becomes more complex and costly. Finally, they pointed
out the need for more future research because of the
conflicting evidence about the effectiveness of the various
strategies for performing the refactoring.

2.4 Code Quality in Scrum

According to the ISO/IEC 25000 standard, code quality is
the capability of the source code to satisfy the stated and
limited needs of the current software project [28,38]. This
indicates how well the code meets the project’s desirable
attributes, including design quality, performance,
reliability, maintainability, scalability, security, testability,
and usability [18]. Code quality is essential for software
projects built up using scrum methods as it facilitates the
maintainability of the software project whenever a change
is required [27]. This change is likely to be requested as
projects that usually use Scrum are prone to changes. [39]
Traditional methods have higher production code quality
than agile methods across similar software development
products. That is because of the short testing volume in
agile, which affects product quality. In scrum, product
quality is usually related to the ’Done’ Definition, which
is not considered any of the software quality standards
and is considered from the development team standpoint.
Unfortunately, limited studies discuss the influence of
agile software development, particularly scrum practices,
on code quality. For instance, the study of [31] conducted
qualitative research using interviews to investigate the
relationship between code quality and agile software
development. This study recommended a list of the
suggested agile best practices to improve code quality in
agile software development. One of these recommended
practices was code refactoring. However, none of the
proposed methods was examined empirically in the study
to measure their effect on code quality. Also, [39]
conducted an empirical study to evaluate the impact of
agile practices on software code quality. The study
compared eight projects; some were developed using the
waterfall model and others using agile methodologies.
The study concluded that even though the waterfall model
takes longer to deliver the product, as it takes more time
to test the code, it has a higher quality than agile products.
The study suggested increasing the software development
quality in agile through more expansive testing measures
before releasing the software. However, this study
examined projects that used XP, not Scrum, as an agile
framework to develop the chosen software products. The
study measured software quality based on software
development hours and the criticality of the defects in the
pre-production and production process. The project
managers determined the criticality based on the effecting
on the system’s functionality, which does not represent all
quality aspects.

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


996 K. Mashaqbeh et al.: Correspondence of OOP Refactoring Techniques in PL...

2.5 Refactoring

Code refactoring is changing a computer program’s
source code without modifying its external functional
behavior [23], which is considered one of the processes to
improve code quality [1, 2, 25, 41]. In the industry,
Microsoft reserves about 20% of development efforts on
thorough refactoring that starts at the release of a system
and ends at the beginning of the subsequent development
iteration (i.e., the next version) [16]. The importance of
refactoring relies on the time spent being saved later with
better software maintainability [1]. Refactoring should be
apied whenever developers add new functionality, fix
bugs (i.e., Floss Refactoring), or improve their code
according to design or code reviews (i.e., Root Canal
Refactoring) [47]. There are two tactics of refactoring:
root-canal refactoring and floss refactoring; during floss
refactoring, the programmer uses refactoring to reach a
specific end, such as adding a feature or fixing a bug. In
contrast, root-canal refactoring is used solely to improve
the code structure and involves complete refactoring [11].
According to [21], root-canal refactoring outperformed
floss refactoring for improving software attributes
indicating the signs of exploitation of the effect of this
tactic against the other. Therefore, this study examines
root-canal refactoring by taking a sprint source code and
using the chosen refactoring techniques to explore their
influence on the sprint source code. There are 72
refactoring techniques proposed by Fowler (2018) to
address code quality problems. These techniques concern
OOP code for objects, classes, and interfaces. To measure
OOP internal quality, related metrics will be used later in
this study, such as move field, move method, extract
method, inline method, pull up, and pull method.

3 Method

This section describes the followed methodological
strategy and the arguments for the chosen method and
illustrates the procedure followed during data gathering
and analysis. Through this study, an experimental
approach is determined to be used due to its suitability for
the used case study to identify and analyze the
relationship between the quality of source code of scrum
projects and refactoring through investigating the effect of
its techniques on scrum sprint code quality for software
developed in PL\SQL. Therefore, maintainability is
measured to identify the corresponding OOP refactoring
techniques in PL\SQL. However, cyclomatic complexity,
Halstead volume, maintainability index (MI), and line of
code metrics are used for the measurements. The source
code before and after is refactored and measured based on
the chosen measures to analyze the outcomes and assess
whether the refactoring effect on scrum code quality is
worth integrating with scrum sprint practices.

3.1 Procedure

As shown in Figure 3, the study model is derived from the
literature review and related work presented in the
background to deal with the uniqueness and contradiction
in the studies regarding the refactoring effect. As shown
in the figure above, a model of successive steps is
developed to validate the results. Moreover, the model
presented in Figure 3 demonstrates the technical
step-wise for conducting refactoring assessment
experiments. Each element represents a step in the
research procedure. The next part of this section describes
the meanings of the presented model elements and the
taxonomy of these elements.

3.2 Case Study and Tool Selection

Refactoring techniques are mainly used within
object-oriented programming (OOP). Thus, most studies
investigated the impact of refactoring on OOP code
quality. However, this study examines the refactoring
effect on a scrum project case study developed using
Oracle PL\SQL. These software applications are
extensive and still in the development phase. The
corporation is expected to have issues with the
maintainability of this software due to rapidly changing
regulations. Therefore, this software project is considered
the most suitable case study for such a study. In this
study, Toad for Oracle is selected as a tool for analyzing
PL\SQL code and measurements and applying
refactoring techniques. Toad is a ”developer tool that
helps simplify workflow, reduce code defects, and
improve code quality and performance while supporting
team collaboration ” [43]. This tool identifies code smells
by determining the violated rules. Pre-refactoring
measurements for maintainability metrics were recorded
for the analysis phase.

3.3 Evaluation Metrics

This study is designed to measure software
maintainability, considered a quality attribute. According
to IEEE standards, Software maintainability is ”the ease
with which a software system or component can be
modified to correct faults, improve performance or other
attributes, or adapt to the changing environment. ” [4]. As
internal measures for refactoring impact code quality, the
following code metrics are used to measure software
maintainability:
1) The Halstead Volume (Computational
Complexity) 2) Number of statements
3) McCabe’s (Cyclomatic Complexity)
4) The Maintainability Index (MI)
These metrics will determine how refactoring affects
scrum sprint code quality by comparing the
measurements before and after applying the selected
techniques.

c© 2023 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 17, No. 6, 993-1002 (2023) / www.naturalspublishing.com/Journals.asp 997

Table 1: Sprint code measurements scores for the selected Case

study before refactoring
Metric Recommended values Score Meaning

Halstead volume 0-1000 2205.98 code is more challenging and would take more skills to comprehend and change content

McCabe 0-10 43 Very complex and high-risk program

Number of statements 0-100 257 Large: Likely candidate for functional decomposition, numerous cohesion improvements probably exist

Maintainability index (MI) >85 72.25 Moderate Maintainability

3.4 Pre-refactoring Code Measurement Using

Evaluation Metrics

The chosen Metrics have been used to measure the source
code quality attribute before applying the refactoring
technique. These scores indicate code complexity,
coupling, and cohesion, showing maintainability. Score
details and their interpretations are presented in the
results section.

3.5 Analyzing Code to Detect Code Smells

The toad code analysis tool is used to analyze the quality
of the case study code. This tool identifies the code smells
based on pre-defined software code quality rules (around
200) based on the rules engine. The software engineering
industry rules are classified into code correctness,
readability, efficiency, program structure, and
maintainability. Toad’s code analysis provides automated
code review to determine whether code follows industry
best practices and meets standards.

4 Results and Discussion

This section represents the case study through which
refactoring affects Scrum sprint code quality and the
implementation of the research introduced in the previous
section. Finally, it describes nine refactoring techniques
and the results of applying them to code quality regarding
maintainability attributes. These experiments are
described in the next section.

4.1 Pre-refactoring code measurement using

Evaluation metrics

The preliminary measurements are shown in Table 1 for
the selected sprint code against metrics chosen thresholds.
All measurements regarding maintainability indicate a
challenging and complex code. This violates a critical
requirement for this ”highly maintainable software.”

4.2 Analyzing Code to Detect Code Smells

The code analysis report is conducted to discover the
violated rules in the selected case study, which might be
expected in PL\SQL code. The same violated rules

appeared again, which indicates common smells in
PL\SQL code. Then, determine a match between the
violated rules and OOP code smells. Thus, these
violations, as shown in Table 1 and Figure 3, are too long
program units, complicated expressions, duplicate code,
and complex conditional statements are the most frequent
code smells, which are all related to the nature of
PL\SQL as a block-structured language where blocks
could be nested within each other. Meanwhile, code may
be repeated in different blocks or changed to be more
complicated.

Fig. 3: Case Study code smells from PL\SQL and TOAD code

analysis

.

4.2.1 Applying the Selected Refactoring Techniques and
Measuring Them

The identified techniques were applied in sprint code by
using each method separately as needed in the code to
handle code smells. In this step, the code is re-evaluated
with the same metric used to measure code before
refactoring to investigate how this technique individually
affects code maintainability. The results of the nine
experiments related to each method are explained by
score level after the refactoring and the recommended
scores, as shown in Figure 4. In the first experiment (E1),

Fig. 4: The nine refactoring techniques results

replace method with the method object technique, which

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


998 K. Mashaqbeh et al.: Correspondence of OOP Refactoring Techniques in PL...

deals with long method code smell, is applied. Before
refactoring, the source code had this code smell, and the
metric score was not good. Maintainability was measured
before and after using this technique. Figure 4 shows the
results after applying the nine techniques to the four
metrics. Halstead’s volume was in the ’challenging’
category (i.e., more senior skills most likely required to
comprehend and change contents) with a score of
2205.98. After that, the category was not changed by
decomposing lengthy procedures and functioned into
smaller ones, but the score decreased positively toward a
better score from 2205.98 to 1082.40. McCabe was in the
’Very complex, high-risk program’ category with a score
of 43; after applying this refactoring technique, the
category changed to the new less complex and risky
category, ’moderate Complex,’ which dropped to a score
of 21. Also, the number of statements is changed from the
’large’ category with a value of 257 scores to the
’medium’ category with a score of 219, indicating an
improvement in cohesion. This experiment’s
maintainability index (MI) was in the ’moderate
maintainability’ category, scoring 72.25. After
refactoring, the index increased to 85.19 scores to become
easy to maintain. The second experiment (E2) applied the
extract method dealing with different code smells such as
duplicate code, long method, feature envy, switch
statements, comments, and data class smells. Halstead’s
volume was in the ’challenging’ category with a 2205.98
score. After applying to refactor, move the code fragment
that can be grouped to a separate new method (i.e.,
function in Oracle) and replace the old code with a call to
the method. The category did not change, and the score
decreased positively, but not significantly, from 2205.98
to 2035.54. While McCabe was in the ’Very complex,
high-risk program’ category, after applying this
refactoring technique, the category did not change. Still,
the degree of complexity and risk decreased from 43 to
38. The number of statements altered from the ’large’
category with 257 scores to the ’medium’ category with
218 scores, indicating improved cohesion. Finally, MI
was in the ’moderate maintainability’ category with 72.25
scores; after refactoring, the index increased toward a
better score in the same category to reach 75.86. In the
third experiment (E3), decompose conditional method is
applied to deal with long method smell. Halstead volume
was in the ’challenging’ category with a score of 2205.98
after applying refactoring by decomposing the complex
and complicated parts of the conditional statements such
as if, then, else, and switch into different methods (i.e.,
procedures/ functions in Oracle). The category did not
change, but the score decreased significantly from
2205.98 to 1076.71, considered a reasonable value.
McCabe was in the ’Very complex, high-risk program’
category with a score of 43; after applying this refactoring
technique, the category changed to a new category,
’Moderate Complex, the degree of complexity and risk
decreased dramatically to 20. Also, several statements
changed from the ’large’ category with 257 scores to the

’medium’ category with 218 scores, indicating a good
cohesion improvement. Finally, MI was in the ’moderate
maintainability’ category with a 72.25 score; after
refactoring the code, the index increased toward an
excellent score of 84.75, approaching the ’easy to
maintain’ category. In the fourth experiment (E4), replace
the error code with the exception method applied to deal
with hiding or concealing error details of the code smells.
Halstead volume was in the ’challenging’ category after
applying refactoring by changing code to throw an
exception rather than returning a unique value that
indicates an error. The category was not changed, and the
score increased negatively from 2205.98 to 2275.16.
McCabe was in the ’Very complex, high-risk program’
category with a score of 43; after applying this refactoring
technique, the category didn’t change, but the complexity
and risk increased to 46 scores. Also, several statements
stayed in the ’large’ category with a 257 score, meaning
there were no cohesion improvements. Finally, MI was in
the ’moderate maintainability’ category with a score of
72.25; after refactoring the code, the index decreased
toward a worse score in the same category, 71.15. The
fifth experiment (E5) applied to replace the magic number
with a constant symbolic method to deal with primitive
obsession code smells. Halstead’s volume was in the
’challenging’ category with a score of 2205.98; after
applying refactoring by replacing a number in the code
with a particular meaning with a constant, that has a
human-readable name explaining the importance of the
number. The category did not change, but the score
decreased positively to 1906.60. McCabe was in the ’Very
complex, high-risk program’ category; after applying this
refactoring technique, the category did not change, but the
degree of complexity and risk decreased from 43 to 40
score. Also, several statements stayed in the ’large’
category with an increase from 257 to 295 score
indicating a lousy impact on cohesion. Finally, MI was in
the ’moderate maintainability’ category with a 72.25
score which decreased by around one score after
refactoring the code. The sixth experiment (E6) applied
the remove parameter method to deal with speculative
generality code smells. Halstead volume was in the
’challenging’ category; after applying refactoring by
removing the unused parameters in functions and
procedures. The category did not change, and the score
decreased positively but not significantly from 2205.98 to
2035.54. McCabe was in the ’Very complex, high-risk
program’ category, and after applying this refactoring
technique, the category did not change, which stayed with
the same score of 43. Also, many statements remained in
the ’large’ category with 257 scores, meaning there were
no cohesion improvements. Finally, MI was in the
’moderate maintainability’ category with a 72.25 score,
and after refactoring the code, the index increased to
72.27. In the seventh experiment (E7), replace Temp with
query method to deal with duplicate code and long
method code smells are applied. Halstead’s volume was
in the ’challenging’ category (i.e., more senior skills most

c© 2023 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 17, No. 6, 993-1002 (2023) / www.naturalspublishing.com/Journals.asp 999

likely required to comprehend and change content). After
using refactoring by extracting functions from variables
that hold expressions, the category was not changed, but
the score decreased positively toward a better score from
2205.98 to 1553.93. Cyclomatic complexity was in the
’Very complex, high-risk program’ category, and after
applying this refactoring technique, the category did not
change. Still, the degree of complexity and risk decreased
obviously from 43 to 33 score. Also, several statements
altered from the ’large’ category with 257 scores to the
’medium’ category with 231 scores, indicating improved
cohesion. Finally, MI was in the ’moderate
maintainability’ category with a 72.25 score, and after
refactoring the code, the index increased in the same
category to reach 77.73. The eighth experiment (E8)
applied the extract variable method to deal with
comments code smells. Halstead’s volume was in the
’challenging’ category due to many complicated
expressions for financial parts. Hence, after applying
refactoring by decomposing complex expression parts
into separate variables. The score decreased significantly
from 2205.98 to 1055.65. McCabe was in the ’Very
complex, high-risk program’ category, and after applying
this refactoring technique, the category changed to the
’Moderate Complex’ category. Thus, complexity and risk
decreased dramatically from 43 to 19. Also, statements
altered from the ’large’ category with a 257 score to the
’medium’ category with a 213 score indicating good
improvements in cohesion. Finally, MI was in the
’moderate maintainability’ category with a 72.25 score.
After refactoring the code, the index increased toward an
excellent score of 83.19, close to the ’easy to maintain’
category. The ninth experiment (E9) applied to
consolidate duplicate conditional fragments method to
deal with code duplicates. Halstead’s volume was in the
’challenging’ category, scoring 2205.98. This technique is
applied by moving out if statements from the code pieces
that will be executed in all conditions. However, the
category was not changed, but the score decreased
positively or significantly to 2195.12. McCabe was in the
’Very complex, high-risk program’ category, and after
applying this refactoring technique, the category stayed
with the same score of 42. Also, several statements
remained within the ’large’ category with a score of 255,
meaning there were no cohesion improvements. Finally,
MI was in the ’moderate maintainability’ category with a
72.25 score. After refactoring the code, the index
increased unnoticeably, staying in the same category with
a score of 72.79.

4.2.2 Post-Evaluation of Refactoring Techniques

After measuring the effect of each technique individually,
the code has been refactored using the most persuasive
techniques from the selected techniques in this study (i.e.,
Replace method with method object, decompose
conditional, extract a variable, extract form, and replace

Table 2: Case Study Metrics for the impact of applying all

influential refactoring techniques

Metric Non-refactored Code Refactored Code % Change

Halstead Volume 2205.98 746.55 66.16%

McCabe 43 12 72.09%

No. of Statements 257 141 45.14%

Maintainability Index (MI) 72.25 86.2 19.03%

Temp with a query). This step allows the investigation of
the overall effect of suitable techniques on code
maintainability. Table 2 summarizes the improvement
results in code metrics after using the most effective
refactoring techniques.

As shown in Table 2, Halstead’s volume was in the
’challenging’ category. After applying the five effective
techniques, the category changed to ’Reasonable’ to
enable programmers to comprehend and maintain the
code. Thus, the score decreased positively and
significantly from 2205.98 to 746.55. McCabe was in the
’Very complex, high-risk program’ category, and after
applying these techniques, the category changed to a new,
less complex/risk category, ’Moderate Complex.’ Thus,
complexity dropped from 43 to 12 score, which indicates
the ’simple program’ category. Also, the number of
statements changed from the ’large’ category to the
’medium’ category, with 141 scores indicating improved
cohesion. Finally, The MI was in the ’moderate
maintainability’ category with a score of 72.25 before and
after refactoring; the index increased significantly to 86.2,
indicating the’ Highly Maintainable’ category. Therefore,
Halstead volume, cyclomatic complexity, and the number
of statements for refactored code have lower scores than
the non-refactored one indicating an increase in the
source code maintainability. The MI for the refactored
code is higher than the non-refactored code, meaning the
code is more maintainable than the non-refactored code.
Thus, the impact of refactoring on code quality regarding
maintainability shows positive improvements.

4.3 Applying to refactor on software code

The following code example represents a sample of
experiment 1 (E1). The refactored procedure is included
in a package for salary payment software. Payment
processing is a lengthy procedure that checks many
employee data validations. Figure 6 represents the code
before refactoring, while Figure 7 represents the same
code after refactoring using replace method with method
object technique. The procedure is decomposed into
smaller ones because each procedure checks one
validation. Then these tiny procedures are recalled inside
the main procedure.

Figures 5 and 6 show a code example of the salary
payment system before and after refactoring; the number
of procedures before refactoring was one, and after
refactoring increased to 10 procedures. The number of

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1000 K. Mashaqbeh et al.: Correspondence of OOP Refactoring Techniques in PL...

Fig. 5: Code example before applying Replace Method with

Method Object technique

Fig. 6: Code example after applying Replace Method with

Method Object technique

statements decreased from 108 to 74 statements after
refactoring. In contrast, the Halstead and McCabe
decreased from 2006 to 163 scores and from 19 to 3
scores, indicating less complex and risky code and
improved code cohesion, respectively.

5 Conclusion

This study reported an experimental study conducted on
the effect of refactoring techniques on the sprint code
quality regarding software maintainability attribute.
Before completing the experiment, a literature review was
shown about code quality in the scrum. The review
indicated that further research is required on the
relationship between scrum practices and code quality
and the need to study how to enhance the quality of the
scrum code. Moreover, there is a significant lack of
empirical studies on refactoring and code quality, which
help programmers improve code maintainability. This
study investigated the effect of refactoring techniques on
sprint code quality through the development process
using root-canal refactoring. The answer for RQ1 in this
study identified several methods in PL\SQL matching
OOP refactoring techniques. These techniques include
decomposing complicated expressions into variables,
lengthy decomposing procedures into functions or
processes, merging out standard code between IF clause
branches, extracting functions from expression variables,
replacing literal numbers or dates with constants,
handling errors with exceptions, decomposing
complicated conditional into procedures, extract process
or system, and remove unused variable. The answer to

RQ2 lies in applying the identified techniques to sprint
code and measuring their effect on code maintainability.
The matching process between OOP code smells with the
related refactoring techniques and PL\SQL violated the
rules with the related restructuring techniques, which
were performed to investigate the effect of refactoring on
sprint code quality. The study shows the impact of nine
refactoring techniques on sprint code quality. Five
techniques positively affected the code’s maintainability,
such as replacing the method with the method object,
decomposing conditional, extracting variable, extracting
method, and replacing Temp with query. These findings
are essential to the scrum framework since they help
programmers to improve their code quality to maintain
the code. It is also crucial to PL\SQL developers to apply
refactoring as an essential step while developing their
software, especially if this software is prone to change.

Acknowledgment

The authors would like to thank and acknowledge Zarqa
University (ZU), Software Engineering, and Computer
Science Departments for their valuable support and
encouragement on the successful completion of this
manuscript.

References

[1] A. Ahmed, S. Ahmad, N. Ehsan, E. Mirza, and S. Sarwar.

Agile software development: Impact on productivity and

quality. In 2010 IEEE International Conference on

Management of Innovation & Technology, pages 287–291.

IEEE, 2010.

[2] S. Ambler. Quality in an agile world. Software Quality

Professional, 7(4):34, 2005.

[3] D. J. Anderson. Kanban: successful evolutionary change for

your technology business. Blue Hole Press, 2010.

[4] ANSI/IEEE. Standard glossary of software engineering

terminology. 1991.

[5] G. Arcos-Medina and D. Mauricio. Aspects of software

quality applied to the process of agile software development:

a systematic literature review. International Journal

of System Assurance Engineering and Management,

10(5):867–897, 2019.

[6] M. Attarha and N. Modiri. Focusing on the importance and

the role of requirement engineering. In The 4th International

Conference on Interaction Sciences, pages 181–184. IEEE,

2011.

[7] K. Beck. Embracing change with extreme programming.

Computer, 32(10):70–77, 1999.

[8] K. Beck. Extreme programming explained: embrace

change. addison-wesley professional, 2000.

[9] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn,

W. Cunningham, M. Fowler, J. Grenning, J. Highsmith,

A. Hunt, R. Jeffries, et al. Manifesto for agile software

development twelve principles of agile software. Zugriff am,

5:2020, 2001.

c© 2023 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 17, No. 6, 993-1002 (2023) / www.naturalspublishing.com/Journals.asp 1001

[10] M. Bott and B. Mesmer. An analysis of theories supporting

agile scrum and the use of scrum in systems engineering.

Engineering Management Journal, 32(2):76–85, 2020.

[11] D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa,

R. de Mello, B. Fonseca, M. Ribeiro, and A. Chávez.

Understanding the impact of refactoring on smells: A

longitudinal study of 23 software projects. In Proceedings

of the 2017 11th Joint Meeting on foundations of Software

Engineering, pages 465–475, 2017.

[12] H. F. Cervone. Understanding agile project management

methods using scrum. OCLC Systems & Services:

International digital library perspectives, 2011.

[13] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and

A. Garcia. How does refactoring affect internal quality

attributes? a multi-project study. In Proceedings of the 31st

Brazilian symposium on software engineering, pages 74–83,

2017.

[14] J. Chen, J. Xiao, Q. Wang, L. J. Osterweil, and M. Li.

Refactoring planning and practice in agile software

development: an empirical study. In Proceedings of the 2014

International Conference on Software and System Process,

pages 55–64, 2014.

[15] J. J. Cho. An exploratory study on issues and challenges of

agile software development with scrum. All Graduate theses

and dissertations, page 599, 2010.

[16] M. A. Cusumano and R. W. Selby. Microsoft secrets:

how the world’s most powerful software company creates

technology, shapes markets, and manages people. Simon

and Schuster, 1998.

[17] A. De Lucia and A. Qusef. Requirements engineering

in agile software development. Journal of emerging

technologies in web intelligence, 2(3):212–220, 2010.

[18] R. J. de Paula and V. FalvoJr. Architectural patterns and

styles, 2016.

[19] S. Denning. The business agility report. Technical report

1-24, Business Agility Institute, 2020.

[20] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe. A

decade of agile methodologies: Towards explaining agile

software development, 2012.

[21] E. Fernandes, A. Chávez, A. Garcia, I. Ferreira, D. Cedrim,

L. Sousa, and W. Oizumi. Refactoring effect on

internal quality attributes: What haven’t they told you yet?

Information and Software Technology, 126:106347, 2020.

[22] W. R. Fitriani, P. Rahayu, and D. I. Sensuse. Challenges in

agile software development: A systematic literature review.

In 2016 International Conference on Advanced Computer

Science and Information Systems (ICACSIS), pages 155–

164. IEEE, 2016.

[23] M. Fowler. Refactoring: improving the design of existing

code. Addison-Wesley Professional, 2018.

[24] N. Holtzhausen and J. J. de Klerk. Servant leadership and

the scrum team’s effectiveness. Leadership & Organization

Development Journal, 39(7):873–882, 2018.

[25] M. Huo, J. Verner, L. Zhu, and M. A. Babar. Software

quality and agile methods. In Proceedings of the 28th

Annual International Computer Software and Applications

Conference, 2004. COMPSAC 2004., pages 520–525. IEEE,

2004.

[26] J. Johnson. CHAOS report: decision latency theory: it is all

about the interval. Lulu. com, 2018.

[27] Ö. KASIM. Secure agile software development with scrum

strategy. 2023.

[28] S. Koh and J. Whang. A critical review on iso/iec 25000

square model. In Proceedings of the 15th International

Conference on IT Applications and Management: Mobility,

Culture and Tourism in the Digitalized World,(ITAM15),

pages 42–52, 2016.

[29] A. Koka. Software quality assurance in scrum projects: A

case study of development processes among scrum teams in

South Africa. PhD thesis, Citeseer, 2015.

[30] L. Krombeen. Improving code quality in agile software

development. 2018.

[31] M. Kropp, A. Meier, C. Anslow, and R. Biddle. Satisfaction,

practices, and influences in agile software development.

In Proceedings of the 22nd International Conference on

Evaluation and Assessment in Software Engineering 2018,

pages 112–121, 2018.

[32] D. Leffingwell. Scaling software agility: best practices for

large enterprises. Pearson Education, 2007.

[33] J. López-Martı́nez, R. Juárez-Ramı́rez, C. Huertas,

S. Jiménez, and C. Guerra-Garcı́a. Problems in the adoption

of agile-scrum methodologies: A systematic literature

review. In 2016 4th international conference in software

engineering research and innovation (conisoft), pages

141–148. IEEE, 2016.

[34] D. Mishra and S. Abdalhamid. Software quality issues

in scrum: A systematic mapping. Journal of Universal

Computer Science, 2018.

[35] N. Naik. Software crowd-sourcing. In 2017 11th

International Conference on Research Challenges in

Information Science (RCIS), pages 463–464. IEEE, 2017.

[36] P. of the profession. Success in disruptive times. Technical

report 1-34, Project Management Institute, 2018.

[37] S. R. Palmer and M. Felsing. A practical guide to feature-

driven development. Pearson Education, 2001.

[38] D. S. Pataron Viñan and F. M. Tisalema Tocalema.

Aplicación web y móvil hı́brida e-commerce para la

empresa “importadora andes llantas & aros” utilizando la

metodologia iconix. B.S. thesis, Riobamba, Universidad

Nacional de Chimborazo, 2023.

[39] L. F. Poe, E. Seeman, and N. Greenville. An empirical

study of post-production software code quality when

employing the agile rapid delivery methodology. Journal of

Information Systems Applied Research, 13(10):1–48, 2020.

[40] P. Rahayu, D. I. Sensuse, W. R. Fitriani, I. Nurrohmah,

R. Mauliadi, and H. N. Rochman. Applying usability testing

to improving scrum methodology in develop assistant

information system. In 2016 International Conference on

Information Technology Systems and Innovation (ICITSI),

pages 1–6. IEEE, 2016.

[41] S. P. Roger and R. M. Bruce. Software engineering: a

practitioner’s approach. McGraw-Hill Education, 2015.

[42] K. S. Rubin. Essential Scrum: A practical guide to the most

popular Agile process. Addison-Wesley, 2012.

[43] B. Scalzo and D. Hotka. TOAD handbook. Sams Publishing,

2003.

[44] K. Schwaber. Scrum development process. In Business

object design and implementation, pages 117–134. Springer,

1997.

[45] K. Schwaber. Agile project management with Scrum.

Microsoft press, 2004.

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1002 K. Mashaqbeh et al.: Correspondence of OOP Refactoring Techniques in PL...

[46] K. Schwaber and J. Sutherland. The definitive guide to

scrum: The rules of the game. Scrum. org., 2017.

[47] M. Stal. Refactoring software architectures. In Agile

Software Architecture, pages 63–82. Elsevier, 2014.

[48] M. Walton. Strategies for lean product development. 1999.

[49] R. Žitkienė and M. Deksnys. Organizational agility

conceptual model. Montenegrin Journal of Economics,

2018.

Khitam Mashaqbeh
received the B.S. degree
in information technology
and computing from
open university and the
M.S. degree in software
engineering from Zarqa
University in 2015 and 2021,
respectively. She currently
serves as a senior software

engineer with The social security corporation, Jordan.

Issam Jebreen

received his PhD in software
engineering from Auckland
University of Technology
(AUT), New Zealand. His
research areas are packaged
software implementation,
Requirement Engineering,
and software development
methods. He had had a long

and effective teaching career in different universities and
countries. His role at AUT supervision/lecturing on the
undergraduate level, leading a team for the delivery of
software project, and updating resources for areas of the
software development methodology, techniques, and
methods. Beside his academic career he had been
working at industry and research area, he had been
working as Packaged Software Implementation consultant
in Jordan as well as Research Assistant at University
National Malaysia. Currently he is an associate professor
at Zarqa University.

Ahmad Nabot earned his
BSc in Computer Information
System (CIS) from Al-
zaytoonah University,
Amman, Jordan, in 2007.
Subsequently, he pursued an
MSc in Information Systems
at DePaul University,
Chicago, USA, completing
it in 2009. He successfully

attained his PhD from Brunel University, London, UK, in
2014. Currently, he serves as an assistant professor in the
Software Engineering Department at Zarqa University,
Zarqa, Jordan.

Ahmad Alqerem

obtaining a BSc in 1997
from JUST University and a
Masters in computer science
from Jordan University
in 2002. PhD in mobile
computing at Loughborough
University, UK in 2008. He
is interested in concurrency
control for mobile computing
environments, particularly

transaction processing. He has published several papers
in various areas of computer science and software
engineering. After that he was appointed as professor at
computer science Depts. Zarqa University.

Amer Abu Salem
currently works as a
head of Computer Center and
as an associate professor at
the Department of Computer
Science in Zarqa University.
Amer does research in Mobile
and wireless computing
and artificial intelligence.

c© 2023 NSP

Natural Sciences Publishing Cor.


	Correspondence of OOP Refactoring Techniques in PL\SQL Environment: A Case Study of Agile Project Code
	Recommended Citation

	Introduction
	Background
	Method
	Results and Discussion
	Conclusion

