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Abstract: Symmetries on a group G are the mappings G ∋ x 7→ gx−1g ∈ G, where g ∈ G. A coloring χ : G → {1, . . . ,r} of G is

symmetric if it is invariant under some symmetry. We count the number Sr(Z
n
p) of symmetric r-colorings of Zn

p, the direct product of n

copies of the cyclic group of prime order p. As a consequence we obtain that Sr(Z
n
p) = pnr

pn+1
2 +Sr(Z

n−1
p ).

Keywords: Symmetric coloring, equivalent colorings, elementary abelian p-group, Gaussian coefficient.

Let G be a finite group and let r ∈ N. An r-coloring of
G is any mapping χ : G →{1, . . . ,r}. Let rG denote the set
of all r-colorings of G. The group G naturally acts on rG.
For any χ ∈ rG and g ∈ G, χg ∈ rG is defined by χg(x) =
χ(xg−1). Colorings χ and ψ are equivalent if there exists
g∈G such that χ(xg−1) =ψ(x) for all x∈G (that is, χ and
ψ belong to the same orbit). Let cr(G) denote the number
of equivalence classes of r-colorings of G (= the number of
orbits of rG). Applying Burnside’s Lemma [1, 1.7] shows
that

cr(G) =
1

|G| ∑
g∈G

r|G:〈g〉|,

where 〈g〉 is the subgroup generated by g. For Zn, the
cyclic group of order n, this formula simplifies to

cr(Zn) =
1

n
∑
d|n

ϕ(d)r
n
d ,

where ϕ is the Euler function [2].

For every g ∈ G, the symmetry on G with respect to g

is the mapping

G ∋ x 7→ gx−1g ∈ G.

This is an old notion, which can be found in the book [3].
For Zn, identifying it with the vertices of a regular n-gon,
the symmetries are the reflections of the polygon in an
axis through one of the vertices (if n is odd, the
symmetries are all the reflections). A coloring χ ∈ rG is
symmetric if it is invariant under some symmetry (that is,

there exists g ∈ G such that χ(gx−1g) = χ(x) for all
x ∈ G). A coloring equivalent to a symmetric one is also
symmetric [4, Lemma 2.1]. Let Sr(G) denote the number
of symmetric r-colorings of G and sr(G) the number of
equivalence classes of symmetric r-colorings of G (= the
number of symmetric orbits of rG). If G is abelian, then

Sr(G) = ∑
X≤G

∑
Y≤X

µ(Y,X)|G/Y |

|(G/Y )[2]|
r
|G/X |+|(G/X)[2]|

2 ,

sr(G) = ∑
X≤G

∑
Y≤X

µ(Y,X)

|(G/Y )[2]|
r
|G/X |+|(G/X)[2]|

2 ,

where X runs over subgroups of G, Y over subgroups of X ,
µ(Y,X) is the Möbius function on the lattice of subgroups
of G, and H[2] = {x ∈ H : x2 = 1} [5]. Similar but more
complicated formulas hold also in the non-abelian case [4].

For Zn, the general formulas simplify to

Sr(Zn) =

{

∑d|n d ∏p| n
d
(1− p)r

d+1
2 if n is odd

∑d| n
2

d ∏p| n
2d
(1− p)rd+1 if n is even,

sr(Zn) =

{

r
n+1

2 if n is odd
1
2
(r

n
2+1 + r

m+1
2 ) if n is even,

where p is a variable of prime value and m is the greatest
odd divisor of n [5]. For the dihedral group Dn, the
semidirect product of Zn and Z2, the numbers Sr(Dn) and
sr(Dn) were counted in [6].
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In this note we consider elementary abelian p-group
Z

n
p, the direct product of n copies of Zp, where p is prime.

If p = 2, then every coloring is symmetric, so

Sr(Z
n
2) = r2n

,

sr(Z
n
2) = cr(Z

n
2) =

1

2n
(r2n

+(2n − 1)r2n−1

).

And if p > 2, then

sr(Z
n
p) = r

pn+1
2 ,

which is a partial case of a more general fact (we prove
it in the end of the note). In [7], Sr(Z

n
p) was counted for

n = 2,3. Notice that a symmetry of ∏n
i=1 Gi is a mapping

∏n
i=1 σi, where σi is a symmetry of Gi, so the symmetries

of Zn
p (p > 2) are the coordinate-wise reflections.

The aim of this note is to count the number Sr(Z
n
p) for

all n. We show that

Theorem 1.For all r,n ∈ N and prime p > 2,

Sr(Z
n
p) = pnr

pn+1
2 + pn−1(1− pn)r

pn−1+1
2 +

+ pn−2(1− pn−1)(1− pn)r
pn−2+1

2 + . . .

+ p(1− p2)(1− p3) . . . (1− pn)r
p+1

2 +

+(1− p)(1− p2) . . . (1− pn)r.

Proof.The number of subgroups of Zn
p of order pk is

(

n

k

)

p

=
(pn − 1)(pn−1 − 1) . . .(pn−k+1 − 1)

(pk − 1)(pk−1 − 1) . . .(p− 1)
,

the Gaussian coefficient [1, 3.11], and if Y ≤ X ≤ Z
n
p and

|Y |= pk and |X |= pm, then

µ(Y,X) = (−1)m−k p(
m−k

2 )

[1, 4.20]. Here,

(

n

k

)

=
n(n− 1) . . .(n− k+ 1)

1 ·2 · . . . · k
,

and if k > n, then
(

n
k

)

= 0 and
(

n
k

)

p
= 0. Thus, the general

formula for counting Sr(G) gives us that

Sr(Z
n
p)=

n

∑
m=0

(

n

m

)

p

m

∑
k=0

(

m

k

)

p

(−1)m−k p(
m−k

2 )+n−kr
pn−m+1

2 .

Comparing, we conclude that in order to prove the
theorem, it suffices to show that

(

n

m

)

p

m

∑
k=0

(

m

k

)

p

(−1)m−k p(
m−k

2 )+n−k =

= pn−m(1− pn−m+1) . . . (1− pn).

If m = 0, both sides are equal to pn, so let m ≥ 1.
The left-hand side of the equality is equal to

and since

(pm − 1) . . .(p− 1)

(pm−k − 1) . . .(p− 1) · (pk− 1) . . .(p− 1)
=

(

m

k

)

p

and n− k = (n−m)+ (m− k) and

(

m− k

2

)

+m− k = 1+ 2+ . . .+(m− k− 1)+ (m− k)=

=

(

m− k+ 1

2

)

,

it is equal to

pn−m(1− pn−m+1) . . . (1− pn)

(pm − 1) . . .(p− 1)

m

∑
k=0

(−1)k

(

m

k

)

p

p(
m−k+1

2 ).

Then the next lemma finishes the proof.

Lemma 1.

m

∑
k=0

(−1)k

(

m

k

)

p

p(
m−k+1

2 ) = (pm −1)(pm−1 −1) . . .(p−1).

Proof.If m = 1, the left-hand side is

(−1)0

(

1

0

)

p

p(
2
2) + (−1)1

(

1

1

)

p

p(
1
2) = p− 1,

so the equality holds.
Now fix m > 1 and suppose that the equality holds for

m− 1. Since

(

m

k

)

p

=

(

m− 1

k− 1

)

+ pk

(

m− 1

k

)

[1, 3.34], we obtain that

m

∑
k=0

(−1)k

(

m

k

)

p

p(
m−k+1

2 ) =
m

∑
k=0

(−1)k

(

m− 1

k− 1

)

p

p(
m−k+1

2 )+

+
m

∑
k=0

(−1)k

(

m− 1

k

)

p

p(
m−k+1

2 )+k.

The first sum is equal to
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and the second one to

because

Consequently, by the inductive hypothesis,

m

∑
k=0

(−1)k

(

m

k

)

p

p(
m−k+1

2 ) =−(pm−1 − 1) . . .(p− 1)+

+ pm(pm−1 − 1) . . .(p− 1)

= (pm − 1)(pm−1 − 1) . . .(p− 1).

As a consequence we obtain from Theorem 1 that

Corollary 1.For all r ≥ 1, n ≥ 2, and prime p > 2,

Sr(Z
n
p) = pnr

pn+1
2 + Sr(Z

n−1
p ).

We conclude this note by counting the number sr(G)
for every finite abelian group G of odd order.

Let G be a finite group and let r ∈N. For every χ ∈ rG,
let

[χ ] = {χg : g ∈ G} and St(χ) = {g ∈ G : χg = χ},

and let

Z(χ) = {g ∈ G : χ is symmetric with respect to g}.

For every symmetric χ ∈ rG and for every h ∈ G,
Z(χh) = Z(χ)h [4, Lemma 2.1], so there are colorings in
[χ ] symmetric with respect to 1, and their number is
|Z(χ)|
|St(χ)| [4, Lemma 2.5]. Furthermore, if χ is symmetric

with respect to 1 and G is abelian, then
Z(χ) = {g ∈ G : g2 ∈ St(χ)} [4, Corollary 2.9], and
consequently, if the order of G is odd, then Z(χ) = St(χ).

Lemma 2.If G is a finite abelian group of odd order, then

sr(G) = r
|G|+1

2 .

Proof.Every symmetric orbit of rG has a coloring
symmetric with respect to 1, and since G is abelian of odd
order, there is only one such coloring. Consequently,
sr(G) is equal to the number of r-colorings of G

symmetric with respect to 1, which is equal to the number
of r-colorings of the set {1} ∪ {{x,x−1} : x ∈ G \ {1}}

whose cardinality is 1+ |G|−1
2

= |G|+1
2

.
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