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[bookmark: _Hlk148550957][bookmark: _Hlk151312195][bookmark: _Hlk151313049]Abstract- Nowadays, several machinery and vehicles utilize mechanical elements which transmit power ranges from low, middle, and high levels depending on the type of equipment needed. Gears are the most influential design elements on any process during the running of a specific application, moreover engineers tried to obtain the optimality of a gear design which is a more compact, reliable- long service with simply operating features by following a systematic calculation of the mathematical model from standards and handbooks, however this process doesn't give the optimal design of the gears. Optimization techniques have been added to the design process for a more robustness of the gear pair design as well as improvements of the performance of the whole machine with better operational characteristics included. In this review paper, a concentration on macro geometry (such as module, facewidth, profile shift coefficients and helix angle) optimization process of cylindrical gears with distinct stages which includes objective function selection, decision variable selection and constraints handling formulation reported in the literature. This paper also provides some details about naturally inspired algorithms presented in the literature and this is what differentiates it from other review articles. Findings deduced by other authors are summarized where they are divided into two sections; based on the parameters of the technique itself while the other section considers the basic geometric parameters. 
Keywords- Optimization; naturally inspired algorithms; macro geometry; cylindrical gears; polymer gears.
I. INTRODUCTION
Modern industry has been utilizing various mechanical components such as belts for transmitting power from its source to consumers [1]. Such components needed not only specific applications, but also a large space to setup in, therefore, gear design 
[bookmark: _Hlk151320320][bookmark: _Hlk151321345]was the corner stone to overcome the problem of space in different applications [2]. Cylindrical gears can be fitted in small places such as watches or heavy-duty machine tools with many advantages such as compactness, light weight, reliability, and effectiveness in power transmission to shaft whether parallel or skewed [3]. All the previous advantages have made various industrial sectors rely on such components. The most common attributes needed in applications such as automobiles are light weight, lower power losses and low manufacturing and computational costs. These features have been a subject of interest for many researchers [4–8]. A relation has been established between these attributes of the gear and its failure of modes. So, different optimization techniques have been presented to decrease the weight and increase efficiency of the gears, protection against failure modes, as well as establishing safety and effectiveness requirements. Gears can be adapted to work in different severe conditions such as elevated temperatures, humidity, and vibration, thus better design solutions with high efficiency could be determined by manufacturers and transmission designers using several optimization methods whether conventional such as goal programming or stochastic such as genetic algorithm [8]. Variety of optimization techniques can be applied to entire system such as automobiles, however the applicability of these techniques is complex because of the high number of objective functions as well as design variables with several types such as continuous, integer and even discrete. So, it could be better if these multiple techniques applied to individual components or decompose the optimal problem into a series of manageable sub-problems for the sake of simplicity with improved product quality [9]. Following the same vein, a study on a co-axial helical gear reducer for example has been carried out by Buiga and Tudose [10] to establish the functionality and structure of components interconnections with specified dimensional tendencies. All the optimization methods have approximately the same procedure explained in “Fig.1”. This procedure starts with defining the customer’s needs such as lower weights or higher efficiency, then collecting data such as materials, operational torque and velocity passing by formulation of objective function with selection of variables and constraints for excluding any unfeasible solutions,
[bookmark: _Hlk151393503][bookmark: _Hlk151401908]finally, the designer obtains the optimal solution needed. This solution should satisfy the customer’s requirements. To build an optimization technique, a mathematical model should be determined through a traditional design process based on durability, tooth bending strength, tooth surface fatigue and interference [11]. Computer-aided design (CAD) model should be built instead of manual design for the sake of ease after obtaining optimum parameters. Multiple optimization methods have been adopted in references [7,12–17]. These methods include numerical conventional and evolutionary ones. However, conventional techniques proved to be slow in convergence to optimum solution giving local optima in addition to their complexity with time consumption which ended with inaccurate design outcomes, so they are not appropriate for this type of problems without any kind of robustness [18]. Robustness means getting the best design in terms of performance without diminishing any source of errors [19]. Although evolutionary and swarm-based algorithms are stochastic methods, they give optimum solutions through their rapid convergence and global search capabilities. This is  because their patterns depend on evolution mechanisms such as natural selection and biological genetics. Stochastic algorithms consist of objective functions such as light weight, variables which are carefully selected, and some constraints not to be violated [20]. Evolutionary based algorithms are based on iterative process to finally obtain the optimal design values where all the constraints are fully satisfied. Moreover, increasing the number of constraints will increase the complexity of the optimization especially when these constraints are non-linear. So, the level of difficulty will be escalated when using classical methods of optimization, thus it is better to use population-based algorithms to deal with such constraints.  This paper is organized as follows:
Section II covers problem formulation, while section III mentions different optimization techniques, section IV summarizes polymer gear materials and optimization, lastly section V establishes a rough guideline for designers considering gear pair design and the performance of the algorithms (see Fig. 2). 

I.  PROBLEM DEFINITION
To begin the optimization procedure, a carefully gear design model should be calculated according to AGMA, ISO, and VDI standards, then formulating the optimization problem containing objective function, variables, and various categorized constraints need to be satisfied. 
This section is divided into four subsections, firstly, section A which summarizes macro geometric variables mentioned in the literature. Secondly, section B covers single objective functions developed by other researchers. Thirdly, section C is concerned with multi objective functions of the gear set covered in the literature
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Figure 1. Flow chart of optimization process reproduced from [21]
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Figure 2. Flow chart of gear pair design optimization

.  Finally, section D is meant to involve sorts of constraints including geometric, control, and design which will influence the optimum solution of the gear drives.
A. Design variables
[bookmark: _Hlk151402743]The most design variables involved the optimization problem and concerning with macro geometry of the gear were face width, module, and number of pinion teeth with gear ratio as design was conducted based on pinion, nevertheless, face width was defined according to width factor  [5,8,22] . profile shift coefficients were utilized as design variables with maximum value of pinion coefficient of X1max = 0.4m suggested by [7,22]. Refs. [4,18] included gear shaft diameter, as well as hardness of the gear material while Yokota et al. [3] attached the diameter of pinion shaft instead of hardness of the material as design variables. In another approach [4] the author combined all the pervious variables comparing two sorts of cases; problem design including bound without expanding and expanding bounds variables suggested by Yokota et al. [3], and newly design variables including bound without expanding and expanding bounds. Variables were bounded to decrease the random search in addition to obtain the feasible solution. Atila et al. [23] applied two different scenarios of variables with ranges adopted by [3,4] seeking the optimality of these variables. The second scenario was regulated according to the standard American Gear Manufacturers Association (AGMA), where some design factors were turned to be parametric factors such as velocity factor (Kv), and form factor (Yf). [24,25] added helix angle and gear ratio as a design variable where the Centre distance is a function of these variables together with module and pinion number of teeth. It should be noted as mentioned by Miler and Hoić [1] that module is a standardized gear tooth size, so it should be a discrete variable with values obtained from technical standards in order to give optimal feasible solutions with the applicability to manufacture while pinion number of teeth should become integer, that's why rounding up or down results in different pair properties and depends on the gear transmission ratio requested by the consumer, however [22] used face width and pinion number of teeth as discrete variables. Panda et al. [18] reported that some variables are more influential on the optimized solution than others. These variables were specified by large dispersion through coefficient of variance. Solution is affected more considering module and hardness which is critical for gear durability and physical dimension, as a result, easily machinable material resisting against different failure modes is fundamental to design gears with light weight as suggested by [18,23]. To conclude, macro geometric variables mentioned earlier in this section and other nomenclature of the gear can be seen in Fig. 3.


B. Single objective optimization
[bookmark: _Hlk151388936]Weight function is the most encountered criteria for most researchers. The optimum weight of a gear set plays a pivotal role if the designer wants a compact gear box design. [3,4,18,23,27–30] utilized weight of a spur gear set as an objective function, aiming to minimize weight of the gear drive through selection of the optimum input parameters. Panda et al. [18] found that besides minimum weight, gear pair could withstand all failure modes in its running condition. The author found that objective function value decreased as number of generations increased until the change was marginal after reaching maximum number of iterations. Refs. [3,10] compared the weight/mass of the gear set before and after optimization using genetic algorithm and conventional method namely, trial and cut error, but the optimum result could not be obtained with a still satisfactory solution in comparison with traditional paradigm. Refs. [4,31] tried to improve the optimum weight of single stage spur gear by considering the optimal gear design problem defined by Yokota et al. [3]. The addition of one variable and three more constraints was the modification for Yokota’s problem. The author reported that objective function scores were getting better solutions than previous studies. [6,23] compared optimum weight function with previous studies. It is interesting that the author could minimize the objective function but could not reach the optimal solution as the algorithms used depend heavily on the type of the optimization problem including number of variables and whether the constraints 
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Figure 3. Schematic of gear pair and nomenclature [26]
are active or not. Maputi and Arora [32] optimized a system of spur gear train using teaching-learning based algorithm (TLBO). Weight and center distance served as objective functions. The E-constraint approach was fostered in the study where one of the objective functions turned into constraint. When a comparison was made for optimal weight, it was favoring weight resulted from TLBO. When conducting a parametric study, it was reported that module is the most influential variable on weight of the gears. Selection of material is also vital to obtain the optimum weight of a gear pair as suggested by Delibas et al. [33]. In their study, a method called Ashby has been fostered which is a group of charts to select optimum material from. This optimum material satisfies a requirement of minimum weight based on bending strength as a constraint. This weight is a function of material index. So, if the latter increases, the former will be reduced. The authors also conducted further optimization to minimize the weight of gear pairs made of the selected materials. The results show minimized weight with material other than common steels. [5,22,34,35] used volume instead of weight as an objective function, however in the research of [34], distinct types of spur gear structures using CAD has been developed taking the influence of bottom clearance and modification coefficients of single stage spur gear into account. The authors claimed that by introducing these coefficients, clearance volume of gear pair could be determined which gave more accurate results of optimization than previous studies. Miler et al. [22] studied the effect of module on bending stress of the gear while making some parameters such as form factor Yf, stress factor Ys constants. It was reported that module had a bigger effect on stress than other variables. Zone factor ZH, transverse load factor , and face load factor   are parameters related to modification of contact pressure of the gear according to AGMA. By including profile shift coefficients as design variables in the optimization problem, the previous factors decreased and this in turn had reduced the contact pressure and volume of the gear pair. Providing three types of steel materials, authors compared the three volume materials including the profile shift coefficients for all gear sets and then excluding the same coefficients from the same gears. Volumes of gear set were calculated based on tip diameter instead of pitch circle to include the influence of addendum modifications. The same procedure was done by [36] where volume of a helical gear set was utilized as a single objective function. Positive addendum modifications were assumed to decrease the scoring failure on gear pair surface [37], this in turn has a significant effect on the minimization of weight of gears. Marjanovic et al. [38] optimized the volume of a spur gear train by ‘Gear Train Optimization’ GTO software. This optimization was not only depending on traditional variables including module face width as well as number of teeth for pinion but also encompassed a demonstration of selection of optimal concept of spur gear train. This concept involved best positions of gear axes, best materials, and best gear ratio. Another study conducted by Golabi et al. [39] attempted to reach the optimal number of stages of any gear train with the target of minimizing a gear box including gears, shafts, and housing shell. By varying the inputs such as power and gear ratio, applicable graphs could be employed for best design parameters such as number of stages, modules, shaft diameters, and face widths. Kostic et al. [40] attempted to minimize 2 and 4 stage spur gear train using innovative approach called golden spiral technique. This method depends on arranging the shaft axes of the gearbox in compact space as possible. This was done by making the distance between axes of first gear pair not causing any overlap between gears, then the other axes will be arranged in order on the contour of spiral. After getting the optimal configuration, volume was determined and compared with the one obtained by any optimization method. Optimization method is better in getting the optimal value of volume, however authors argued that the best technique is the one carried out with lesser effort. Another evaluation criterion was used by [24]. In this study, center distance was used as an objective function, aiming at minimizing weight of a single stage helical gear by using fmin technique in MATLAB toolbox, however a preliminary design of the gear reducer was done. In this design, pinion diameter was calculated according to contact fatigue strength, whereas determination of module was based on bending fatigue strength. The model started by initiating condition parameters such as power, driving gear speed in addition to material properties and working life of the gear. Results of optimization were compared to their counterparts of preliminary design where the authors revealed that minimum center distance could be obtained because of optimization. Carroll and Johanson [41] extended the work of previous literature when optimizing center distance by adding geometrical and dynamic factors to the bending stress equation according to AGMA. Their results revealed feasible center distance than previously done work, however, the algorithm used could not deal with discrete set of teeth and diametral pitch. Kader et al. [42] tried to optimize center distance of spur gear pair made of 20 dissimilar materials. Pinion number of teeth and module were catered as design variables. The aim was to study the mode of failure of each material which affects compactness of the gear pair under the optimized parameters such as pressure angle. 
C. Multiobjective optimization
[bookmark: _Hlk151400210][bookmark: _Hlk151400581][bookmark: _Hlk151400814][bookmark: _Hlk151401523]Multiobjective optimization was also studied extensively in literature. Weight and center distance of a spur gear pair were adopted by [43,44] as two objective functions. Three types of materials with specific properties were introduced in [43] namely, cast iron, alloy steel, and epoxy glass composites. The authors established a solid structure on SolidWorks as well as static structure using Ansys software inserting these materials alongside with input parameters chosen for the purpose of power requirement of windmill such as power, speed of the pinion, gear ratio, and service life. By modelling the gear set, weight of the gear set could be obtained. Genetic algorithm was also applied in the study to get the optimal parameters of face width, module, and pinion number of teeth; thus, results could be compared before and after optimization. Marcelin used the concept of multi-criteria optimization [45]. His aim was to minimize the volume of a cylindrical gear pair summed with the balance of sliding velocities at the first and last point of contact to overcome the wear, furthermore, checking and balancing two power values Ppress, and Prup; adapted from Hertzian theory and material resistance in bending. Comparing the reference calculation with the optimization, optimal solution for all preceding objectives was achieved with the efficient genetic algorithm method. A trade-off between volume and surface fatigue life of various stages of spur gear unit was assessed by Thompson et al. [46]. The aim was equalizing and minimizing fatigue lifetime of all stages of the gear train, however the study concluded that more evaluation needs to be conducted on several wider range of gear design problems before getting more broader conclusions. Huang et al. [47] tried to optimize same objectives of Thompson et al. using Interactive physical programming method. By applying the concept of multiobjective, surface fatigue life was sacrificed to get the optimal solution of volume and load capacity as per the preference of a designer. CHONG-HYONG et al. [48] used goal programming method to optimize volume and vibration of helical gear pair. The aim was to show the trade-off between the two objectives. results obtained were better than single objective optimization and validated through the applicability on elevator gearbox. Spur gear pair power loss was investigated as well as weight/volume and centre distance by [8]. It was mentioned in the study that heat generation was the reason for power losses. These power losses consisted of two types; load dependent due to friction and load independent which were related to external factors such as bearings, seals, in addition to oil churning in which is controlling in high input speeds, and this was not the case in the article. Power losses were minimized with the novelty of adding bottom clearance volume to the equation of volume to increase the level of accuracy where, clearance is the distance between dedendum circle of a gear and addendum circle of the mating gear. Results of optimization and standard gear pair were compared. Two different models were built; the first one with profile shift coefficients while the other without these coefficients to study their effect on both efficiency and volume. Different models of power loss calculations were introduced in the literature. One of these models was formulated by [49,50] which stated that power loss depends on coefficient of friction which is constant along pitch line, and load sharing ratio, but Hohn [49] neglected the rolling power losses as well as load independent power loss. Refs. [50,51] studied all types of power losses resulted from spur gearbox at different load and speed conditions. The authors elucidated that considering one type of power loss will increase the other type which in turn affects the overall efficiency of the gearbox. By measuring load independent power losses from experimental data and applying empirical formulas, gear mesh efficiency and total efficiency of the gearbox could be estimated. A similar study has been done by Korka et al. [52], however, here, the authors compared the gearbox efficiency calculations from analytical formulas with estimated by experimental data. It was reported that both results agreed with variation of less than 2%. previous power loss and coefficient of friction models introduced in literature are shown in tables 1 and 2. Theoretically, nearly all the optimization techniques use speed and torque as an input to the algorithm, solving the optimization design problem. However, in practice, gearbox is being exposed to uncertain load changes. So, the need for robust optimization is essential for optimal performance of a gearbox [19]. Salomon et al. [19] established a technique for optimization of a 2-stage gearbox called Active robust optimization. By taking the reasons, (neglecting some environmental and inaccuracies in operational parameters) for variations of load, robust optimal gearbox could be attained. Nevertheless, most literature considered the robustness only when converging toward optimal objective functions regardless of any inaccuracies such as in [23]. Based on the previous sections, a comparison has been made showing the strengths and weaknesses of single and multiobjective approaches as shown in table 3. 
D. Constraints
The most common constraints in any design optimization problem are the design constraints. These constraints involve bending fatigue strength, surface fatigue strength  based on ISO 6336:2006 and AGMA [7,22,24,53,54], and torsional strength of pinion and gear shafts, respectively were added by [5,18] moreover, attached two more types of constraints which were geometric constraints related to premises of gear sizing such as teeth constraints to avoid interference between pinion and gear, whereas control constraints considered to control values of module, face width for the purpose of uniform load distribution among teeth, and flash temperature to overcome scoring failure. [4,23] used another type of controlling constraint which was Centre distance to ensure compactness of the design. Mounting inaccuracy is a plausible reason for decreasing contact ratio, thus transverse contact ratio was used as a controlling constraint to ensure continuous action without any noise and vibration as suggested by [7,8]. To the best of the authors knowledge, most studies in literature lacks the connection to practical field, thus, [10,55] considered all design constraints related to industry including gears, shafts, bearing, seals, and lubrication constraints. A pie chart showing the percentage of all each type of constraint adopted by other researchers in the literature “see Fig. 4.”
	Table 1. Various models of gear pair power loss for steel gears
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	Table 2. Various models of gear pair friction coefficient for steel gears

	Ref.
	Model
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	Table 3. comparison between single and multiobjective approaches

	Type of approach
	Single objective approach
	Multiobjective approach

	Computational time
	less
	more

	Computer resources
	less
	more

	Decision making methods
	no
	yes

	Objectives’ compromise 
	no
	yes
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III. OPTIMIZATION TECHNIQUES
Meta-heuristic optimization methods were used by researchers to solve optimization problems of gear pairs. These naturally inspired algorithms consist of population individuals that evolve through some operators such as mutation and recombination. A statistic has been made to estimate the number of articles in literature using various meta-heuristic algorithms for optimizing cylindrical steel gear pair “see Fig. 5”. 
This section provides an overview of different algorithms that have been in the literature providing the mechanism of their work. The subsections include “A” which provides studies about genetic algorithm, “B” gives literature about particle swarm and simulated annealing algorithms, finally “C” in which we investigate variety of other population-based algorithms.
Figure 5. Number of articles adopting meta-heuristic
A. Genetic Algorithms 
GA is one of the most common evolutionary algorithms which is a population-based method proposed by [64]. This technique started with moving from initial population of chromosomes which consist of genes or bits to new generations using natural selection alongside with genetic operators such as crossover which exchanges subparts of two chromosomes, and mutation which changes allele values (0,1) of some locations in the chromosomes. Hopefully that the performance of the new population is better than its ancestors [65]. Miler et al. [22] selected population size of 300 as claimed that population size affects the solution accuracy and computation time. Results were obtained based on 10 replications with a total of 60 runs using three types of input data sets, moreover, validated by a commercial software called KissSoft. In another research conducted by Kim et al [66] a total of 500 was used whether for generation or population with a mutation and crossover rate of 0.5 aiming at decreasing mass and loaded static transmission error (LSTE), while increasing efficiency using a non-dominated sorting genetic algorithm (NSGA III), nevertheless, Fonseca et al. [67] used GA for optimization of transmission error came from non-ideal tooth profile or loaded tooth due to mesh stiffness, however results were 15% increase in comparison to previous literature. Miler et al. [7] used a population size of 500 with 1000 generations to ensure lower computation time and high quality of the objectives. In [68], the authors tried generation number of 150, proving the practicality of GA in solving three objective functions of weight, Centre distance, and deflection of spur gear, in addition to comparing the results with those obtained by traditional methods such as geometric programming or graphical technique. Another study conducted by Padmanabhan et al. [69], weight, Centre distance, output power, and efficiency were catered as objective functions. It was reported that GA results gave better solution than other analytical tools, the same conclusion was drawn by Yan [70] except that Yan used neural network to establish the relationship between tooth shape factor and number of teeth.  When attempting to test GA and Fmincon to minimize centre distance and maximize power output in the study conducted by Ananthapadmanabhan et al. [20], results favoured GA. Since Fmincon depends on the starting point specified by the designer, and the inability to deal with discrete variables. Singhvi et al. [9] performed 3 studies on 2-stage helical gearbox, (i) minimizing volume, then use optimum variables to calculate load capacity of shafts using Fmincon, (ii) repeating the same procedure using coded GA, and (iii) formulating multiobjective optimization using NSGA II. Multiobjective problem simulated the reality and outperformed single objective methods, however 500 generations plus 500 population size were used which took too much computational time and function evaluations. When optimizing multiobjective problem, the decision on choosing optimal solution is complex as the algorithm gives more than one optimal solution, called pareto frontier [11]. There is a trade-off between objectives, thus Maputi and Arora [11] adopted various approaches for decision making, however unfortunately, the optimal weight, power loss, and centre distance could not be attained. Notably, when adding more constraints to the problem, the solution gets complex, but better, and this was done using GA by Patil et al. [13]. In their study, the authors discussed the quality of the solution, e.g., weight and power loss by adding some tribology constraints such as scuffing and wear. It was argued that these constraints were violated when treating the problem as single objective optimization. similarly, in a study conducted by the same authors [15], same problem formulation has been studied, however results were compared in multiobjective optimization with or without tribological constraints. When repeating the same method on 2- stage helical gearbox [16], the results of multiobjective power loss and volume were superior compared to single objective optimization. the results shown a 50 % decrease in power loss with a slight reduction in volume. In all 3 studies [13,15,16] the authors did not mention how the optimal solution was selected from the pareto frontier. This issue was solved in the study of Dixit et al. [71] where a method of decision making called criteria importance through intercriteria correlation (CRITIC) was fostered. Additionally, all gear failures on micro and macro scale were served as constraints. Deb and Jain [12] discussed the importance of GA in solving the complexity of 18 speed gearbox and compared it with classical methods. In their study, a rough guideline was established for designers and manufacturers to attain a compact and efficient gearbox. This was done through varying one variable while the others fixed while satisfying all constraints imposed. GA was utilized to optimize a finite element physical model for simulating transmission error of single stage gearbox in a study conducted by Younes et al. [14]. The problem was formulated as a multiobjective optimization where all sorts of power losses as well as transmission error were taken into consideration. Results show lower values of both objectives due to optimum macro and micro geometry variables. On the contrary, Bonori et al. [72] showed how GA was effective in minimizing transmission error using only micro geometrical variables affecting optimization problem. Choi et al. [73] minimized same objectives as [14] but considered only load dependent power losses as a second objective. Apart from coding, MATLAB toolbox was used to solve optimization problems where genetic algorithm was built in it. Belarhzal et al. [8] optimized centre distance, volume, and efficiency using GA toolbox by adopting multiobjective optimization with initial population size of 500 individuals along with test runs of more than five times for more accurate solutions. Wang and Gui [74] combined GA toolbox and Neural network to optimize a 2-stage helical gearbox of a tower hoist. Results were compared with sequential quadratic programming (SQP) where the comparison favoured GA. A similar conclusion was drawn by Chaturvedi et al. [75], where the results depend on the application suited best. To include constraints in the optimization problem which provide appropriate design solutions or restrict solution space within feasible area, penalty functions have been developed to treat such constraints. Several penalty functions have been adopted in literature such as exterior and interior functions. Mendi et al. assessed static penalty function for the optimization of whole of gear box components [76] whereas, Gologlu et al. [5] utilized exterior penalty function with either static or dynamic functions. In static penalty same value of penalty term was used throughout the entire selection process, moreover constraint violations were converted to penalty function Ps, whereas dynamic penalty function PD, incorporated an increasing penalty factor to enhance selective pressure during evaluation process, and it was defined by some parameters such as C, α, and β which were problem contingent for the purpose of adjusting the penalty scales. Either static or dynamic added to the global objective function to form unconstrained problems to be minimized. The authors claimed that obtaining optimal solution depends heavily on which function is being used as well as its user defined parameters. Static or dynamic penalty functions   with lower gear ratio gave quite a workable solution but not the optimal ones. Dynamic functions were better in objective function than static penalties while the former gave higher modules than the latter. 
B. Particle swarm and Simulated annealing algorithms 
The originality of particle swarm came from simulation of a simplified social system. This system was developed for the purpose of simulation of bird flock choreography which is unpredicted. Kennedy and Eberhart [77] developed this algorithm which is one of the common evolutionary algorithms contains computation features. These features include initialization with population of a random solution and updating generations to search for optima. Following the current optimal particles, potential solutions called "particles'' are flown through the problem space. The process of this algorithm is as follows; internal velocity generates random particles during the evolutionary process. These generated particles violated the constraints system ensuing infeasible particles. Therefore, handling the constraints system along with evaluation and measurement of infeasible solution is essential. Adopting various paradigms such as repair the infeasible individuals, rejection of the infeasible individuals, and penalty function which is promising as suggested by [4,78,79]. The evolution PSO only seeks the optimal solution where all particles tend to converge to the best solution. Therefore, this algorithm is powerful, robust, and can give accurate solutions as it does not need any coding and encoding process and special genetic operators unlike genetic algorithm which faces a difficulty in the adjustment and calculation of optimum controlling parameters. PSO applied by Savsani et al. [4] on two cases; one designed by Yokota et al. [3] while the other case modified with more variables and constraints. In both cases PSO gave higher reduction in weight of the gear pair than simulated annealing algorithm and genetic algorithm adopted by Yokota et al. [3] with low function evaluations. Although this algorithm gives the optimal solution than others in less time, several test runs are needed to obtain the optimum algorithm parameters which affect the final solution. The same problem of Yokota and Savsani was studied by Alam and Panda [80]. In their study, multiobjective optimization approach was adopted instead of single objective optimization one. Weight, contact pressure, and minimum film thickness were used as objective functions. The authors claimed that the contact pressure differs along each point on the action line which results in failure of the tooth surface e.g., pitting, scoring. So, it should be taken into consideration, additionally diverse types of wear may occur due to less lubrication, thus it would be better to optimize the film thickness. The authors used three different optimization techniques, e.g., PSO, hybrid PSO-TLBO, and JAYA with 100 population size and 300 iterations. For the comparison of the reliability and robustness of an algorithm, statistical analysis has been done using ANOVA and Friedman tests. The tests showed the superiority of JAYA over PSO and PSO-TLBO in terms of fitness function and computational time. When using negatively altered tooth sum of 85 with positive profile shifts the scoring failure decreased as well as decreasing in all objectives, thus, this agreed with [81]. It was investigated that weight would be further decreased by taking minimum film thickness as an objective function. Simulated annealing technique originally came from slow cooling of molten metal process aiming at achieving minimum objective function in the minimization problem [82]. The simulation of the cooling phenomenon is done by temperature parameter control. It is same way as the one introduced with the Boltzmann probability distribution concept where the energy of a thermal equilibrium system is distributed probabilistically. Search space assumed to follow Boltzman probability distribution, therefore the algorithm convergence can be controlled. Savsani et al. [4] started the first generation of the algorithm, the initial point is selected at an elevated temperature whereas a random point was created as a second one. The difference of function values at the two points was determined. If the second point has a minimum function value, then it is accepted, if not the point is accepted with probability of exp(-/T). The next generation started by randomly selecting another point neighbouring the current point where the algorithm chose whether to accept or reject the point. When a sufficiently small temperature was obtained or a slight change in the function value is found, the algorithm was terminated. Determining the average number of function values at random number of points would enable designers to estimate the initial temperature. The availability of computational resource and solution time gives the reliability of choosing the number of points 'n' which is between (2-100) with decrement factor selected by the user. By increasing number of variables, simulated annealing algorithm behaved effectively in reducing the objective function with less function evaluation than genetic algorithm, but not so effective for giving optimum solution with less function evaluation as PSO algorithm. Lin et al [83] attempted to combine simulated annealing and generative rules ‘’which used in changing size and positions besides adding or removing shafts and gears’’ to obtain the optimal configuration gearboxes which meet specific requirements in the industrial field such as spacing, number of stages, and gear ratios, but the combined method needs more improvement to give higher gear ratios and more stages. Chong et al. [84] formulated a four-step method of optimization of multi-stage gearbox. The number of stages and partial gear ratios were determined through random search in the first two steps whereas parameters such as module, pinion teeth, and facewidth were calculated using method of generate and test. Finally, simulated annealing was utilized to obtain the optimal arrangement of gears and shafts which give the minimum possible volume. From the above articles, it should be noted that gears and shafts positions meaning their arrangements should be taken into consideration to get global optimal solution from the proposed algorithm. Performance comparison between the optimal solution of centre distance of spur gear pair resulted from SA and GA reported in Rai and Barman’s study [2]. Surprisingly, GA exceled SA in terms of optimal solution, function evaluations, and computational time whilst the vice-versa happened in [4]. 
C. Other optimization algorithms
Differential evolutionary algorithm (DE) was proposed by Storn and Price [85] which is too close in working principle to other natural inspired algorithm with strategy of DE/x/y/z, DE stands for differential evolution, x is a string implying a vector to be perturbed, y is the number of differences taken for perturbation of x and z is crossover method. DE was modified by skipping initial iteration when bound violation occurred together with implementing the method using forced and no forcing bounds aiming to deal with violation of bounds. Panda et al. [18] suggested a method to handle the discrete variable during coding by converting it to continuous one. The proposed method was implemented using MATLAB. After using different population sizes ranging from 30 to 150, it was found that increasing population size till 100 would decrease the weight function, whereas beyond 100, value was marginal, moreover, using different iterations ranging from 100 to 7000, resulted in approximately no difference in the objective function. So, this algorithm depends on test runs and not on any mathematical proof. Repeating multiple checks on constraints will give a valid and stable solution. This algorithm ensures lower weight, but not CPU time compared to GA, SA, and PSO proposed by other researchers. After testing, the author suggested population size of 100, mutation factor of 0.4, crossover probability of 0.8, and number of iterations of 100 would converge towards the optimal value of gear train weight together with resist scoring failure. DE was used in another study conducted by Abderazek et al. [86]. In their study, specific sliding at the extreme point of contact in gear mesh was the objective function. The researchers claimed that optimal profile shift coefficients lead to balancing specific sliding which in turn decrease wear on both pinion and gear. Results showed the outperformance of DE over the classical methods such as adaptive-grid-refinement (AGr), and traditional methods such as different standards. The authors also provided charts for selecting different usable profile shifts to be adaptable in variety of applications. Distinctive design problems were optimized using DE to test robustness of the algorithm, e.g., in [87], the authors optimized spur gear weight where the algorithm was run 100 times to escape from local optima. The results showed the outperformance of DE compared to other meta-heuristic methods. Balancing specific sliding used as a constraint resulted in global optimal solution using the same algorithm. Balancing bending stress on both gears was used as another objective function. In the same vein, obtaining maximum root bending stress by FEA was studied in [88], then used as objective function to be minimized. The authors in [88] claimed that developing holes at root with known locations and sizes will decrease the static bending stress. Artificial bee colony (ABC) was inspired by the way that bee colonies communicate with each other by waggle dance when searching for food in nature. It was suggested by [89] which is a swarm based heuristic optimization technique providing that, food location gives possible solution to optimization problem while the amount of nectar of food represents how fitness the solution is. ABC optimization has been used in many optimization problems covered in literature by [90–93]. To apply this algorithm, inertial parameters were included by Atila et al. [23] such as selecting the number of food source half of the colony size. The author reported minimized weight of the gear pair same as optimum obtained by AAA algorithm, but with double of function evaluations with thirty test runs. Mirjalili et al. [94] developed grey wolf optimizer (GWO) which simulate the performance of the grey wolves in the wild with a hierarchical structure within the pack. Alpha, Beta, Delta, and Omega represent the four different hierarchical levels as well as defining the first four individuals in the fittest position. The other individuals in the pack were led by the first four individuals. Alpha leads the pack, gives orders, and takes decisions. Beta is the consultant for Alpha and the organizer of the pack alongside commanding other individuals. Omega is obedient to other prominent levels individuals. Delta is a wolf other than Alpha, Beta, and Omega. Deltas control Omegas, however, they are obedient to Alphas and Betas [6]. This new optimization method was covered in literature by some researchers [95–98] solving different optimization problems, nevertheless this algorithm contributes to literature as it was first introduced for the optimization of gears by [6,23]. Atila et al. [23] claimed that GWO produced minimized weight remarkably close to AAA algorithm using extend range of variable bounds. The mathematical model derived from hunting techniques was adapted to different optimization problems, and it was developed by [17]. Each wolf in the pack represents a solution to the population. Alpha was the fittest solution while Beta and Delta were the second and third best solutions respectively, finally the rest of solutions were considered as Omega. Search space and prey simulated hunting area and optimum solution, respectively. [6] defined the objective function, design variables, and constraints using developed code in MATLAB where the author checked if all constraints were satisfied, or the author would use penalty as a fitness value. In the same study the researchers used population size of 30 along with number of iterations of 300 while the algorithm was run 100 times. Whale optimization algorithm (WOA) depends on the imitation of the performance of schools of whales hunting their prey, accordingly these individuals are updating their position following the position of their prey. It was proposed by [99] where it is considered as swarm-based algorithm. By searching deeply in the literature, it was found that this method was the least method to converge rapid towards the optimal solution comparing to other optimization technique as deduced by Atila et al. [23]. Artificial algae algorithm (AAA) is a swarm-based optimization method developed by [100]. This technique was inspired by the lifestyle of microalgae. In this method, a possible solution is simulated by position of algal colony, whereas fitness value is mimicked by nutrient concentration of colony. Atila et al. [23] adopted some internal parameters which were crucial to optimize weight of the gear such as parameter adaption of 0.3, sheer force of energy loss of two, and adaption process of 0.5. this approach used by the author gave the best solution or converged quickly to the optimum weight of gears which gave it superiority to other algorithms, but with high computation time and function evaluations. It also has been reported that even with extended range of variable bounds such as module, face width, and diameter of gear shaft, AAA resulted in optimal solution together with least function evaluations. Weight of the gear set could be reached with AAA algorithm when increasing the number of variables as reported in the article with the least function evaluations compared to the rest of algorithms. 

IV. [bookmark: _Hlk151312440]OPTIMIZATION OF POLYMER GEARS
Apart from steel gears, polymer gears have proven themselves in the modern industry as an efficient component in various industrial field such as automotives, food machines, and office machines [101]. Polymer gears have several possible advantages such as light weight, lower cost production, as well as inherent lubrication. These merits have helped them to be used in different loading media from high to low, however rating criteria from steel gears should be used [102]. Large scope of materials has been investigated in metallic gears in the literature, on the contrary, the most extensively materials studied by researchers were nylon and acetal with their endurance limit available in VDI [103]. When researchers studied polymer gears specially acetal ones, they came across their failure mode which is the deterioration of their mechanical behaviour at elevated temperatures [104]. Various researchers studied operating conditions, macro geometry [105] and material selection [106] on efficiency of polymer gear pair. In both [105,106], giving lower module and transmission ratio increaser, results in higher coefficient of friction and lower efficiency. Different models of coefficient of friction were fostered by researcher in the literature for steel gear (see section II B). The only formulation of friction coefficient for polymer gears was done by Miler et al. [107] for specific range of sliding velocities and curvature radii. If the gear pair wear extensively, power loss will be increased thus, transmission efficiency will be reduced. A study of Mao and coworkers [101,102,108–112] as well as Kukureka et al. [113] investigated the wear of polymer gears under different load conditions. the results showed that thermal wear is the common failure mode under elevated temperature reaching the melting point of the material. They deduced the critical torque at which gear pair will fail from a temperature model predicted by the authors, thus increasing life and efficiency of the pair. Multi objective optimization were done using genetic algorithm by Miler et al. [114]. Module, facewidth, number of pinion teeth, and profile shift coefficients were served as design variables. Different constraints were used to exclude the unfeasible solutions such as bending and contact strength, flank and root temperature, wear, and finally deformation. A parametric study has been conducted to show the effect of variables on objective functions such as weight and power loss. Optimization results were compared with experimental data. Lastly, a multicriteria function was developed by [115] to optimize polymer gears in terms of decreasing volume and cost. This function was the motive to develop software to variate the macro geometry of the gear pair and through several iterations, getting the most optimized gear pair 
with satisfaction of all constraints. 
V. GUIDLINES FOR GEAR PAIR DESIGN-OPTIMIZATION
A rough guideline is divided into two subsections: the first one concentrating on the technique itself for obtaining the best optimization solutions. In this subsection, testing all parameters of the algorithms reported by other researchers were mentioned such as population number and iterations. Whereas the second subsection considering design parameters such as module, facewidth, number of teeth, profile shifts, and helix angle of the gear pair whether they are spur or helical gears. This guideline is based on the results demonstrated in the literature.
A. Considering optimization method (Performance)
Testing number of generations in a study conducted by [36] using genetic algorithm led to variation in the optimal solution of volume, however generations above 200 gave slight effect on the results, therefore computational time decreased. The procedure was assessed by [79], however the algorithm used was PSO with iterations of 100 gave best reduced volume of helical gear pair. So, the conclusion here is that designer should run the algorithm several times with variability in generation and population until a satisfied solution is obtained based on the application requirements, this agreed with [116]. Including more variables such as profile shifts or expanding the variable range would make the solution converge slowly compared with no profile shifts [22,36]. When comparing GA with an analytical program on Bordland Delphi 6.0 platform developed by Mendi et al. [76], GA performed reliably and efficiently decreased the volume of spur gear pair by 1.47 %. It is worth mentioning that based on the stochastic nature of any algorithm, it should be validated for optimal solutions whether by CAD or any analytical programs. Unfortunately, in [117], the authors tried to extract the optimal solution after optimizing two stage spur gear reducer using NSGA-II through adopting three different methods of decision making: linear programming technique for multidimensional analysis of preference (LINMAP), Shannon Entropy (SE), and technique of order preference by similarity to an ideal solution (TOPSIS), however optimal centre distance, bearing capacity coefficient, efficiency as well as different decision variables could not be attained. The same conclusion was drawn in [11,118] as the optimal solution may be considered based on the designer’s preferences according to the required application. Regarding the previously mentioned studies of [3,4,6,18,23] where they tested variety of naturally inspired algorithms on the same case firstly developed by Yokota et al. [3] . A comparison can be shown between all the algorithms mentioned in table 4. As can be seen from table 4. however, solution was the one obtained by Artificial algae algorithm (AAA), however with the increased number of function evaluations, moreover for rapid convergence, all algorithms performed quickly except for WOA and GA when adopting the case of Yokota et al. as can be seen in “Fig. 6”. When using the extended variable ranges GWO, and PSO gave best convergence with the lowest function evaluations rather than other algorithms see “Fig. 7”. 
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Figure 6. Relationship between gear pair weight and function evaluations for Case-1 “regular variable ranges”
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Figure 7. Relationship between gear pair weight and function evaluations for Case-1 “extended ranges of design variables”

[image: ]Table 5. demonstrates the same case, but with the expansion of variable ranges. Although Same algorithm PSO has been used by different authors, results showed enormous difference in the weight function of the spur gear, this is due to variations in the number of iterations used. By adding more constraints and variables as suggested by Savsani et al. [4], combined with the same variable ranges presented by Yokota et al. [3] results showed more improvements comparing to previous tables 4,5 as can be seen in table 6., although the variations in the optimal solutions were marginal. Taking another study into consideration, confining the performance of differential algorithm (DE), it gave reduced weight compared to PSO, GA, and SA adapted by Savsani et al. Shown in Fig. 8., however more satisfied solution was revealed using AAA simulated by Atila et al. which stated that artificial algae algorithm (AAA) gave efficient and robust solution more than any other algorithm and this proved by implementing statistical analysis. Fig. 9 and 10 Comparing different algorithms in terms of function evaluations, including more variables and constraints, would make the problem more complex than case-1 with more computation time, so DE gave best solution in terms of weight and function evaluations. A parametric study and statistical analysis should be done to evaluate how reliable and robust the algorithm is.
B. Considering the design of gear pairs
For multiobjective optimization, it should be noticed that producing a clarified conclusion about a particular variable is overly complex due to the connection of influences of design variables [1]. Sometimes results of optimization could be vague when considering objectives or optimized design variables such as the study conducted by [66]. The authors could not conclude a clear statement about the optimal solutions, so they used max – min normalization method to specify the optimal solution of the objectives with design variables. Summarizing the results in the following points for each objective function mentioned in the literature. When minimizing the volume and centre distance of the gear pair, the following should be considered:
Increasing module in combination with pinion profile shift coefficient x1 instead of the adjustment between module and face width, results in lowering the volume and centre distance of the gear set at the cost of power loss. This was confirmed by Belarhzal et al. [8] when optimizing three objective functions; volume, efficiency, and centre distance. increasing profile shift factor will increase the contact ratio which in turn produces a compact design. A trade-off between efficiency and volume has been found in [7] based on multiobjective optimization. So, increasing volume will decrease efficiency of the gear mesh. When targeting lower power losses, it has been shown that the following is considered: Decreasing the input speed will reduce the power losses for high contact ratio (CR) higher than 2 or 1.7 < CR < 2 as suggested by [8]. Increasing module with higher number of pinion teeth have a significant effect on minimizing gear pair power losses with increase in volume [7,11] carrying multiobjective optimization while [49,119] argued that increasing module resulted in increased power losses of a gear pair. This is done without optimization. No clue has been found about the exact effect of the addendum modifications, as in a study of [8,59] which mentioned that increasing profile shifts will decrease efficiency of gear mesh, while [7,56] deduced that positive profile shifts for both gears reduced the power losses of the gear set. As face width of the gear increases, power losses decreased, this was suggested by [119,120] and was supported in a multiobjective study conducted by [7,118]. Substantial number of pinion teeth, with higher transmission ratio gives lower loss factor Hv which in turn decreases power losses according to Niemann, similarly Baglioni et al [56] supports the same theory which gives easiness to reach the optimal design with lower power losses. The existence of helix angle increases power losses as introduced by [49]. 


Figure 8. Comparison between performance of different algorithms for Case -2 “expanded variable ranges”
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Figure 9. Relationship between gear pair weight and function evaluations for Case-2 “regular variable ranges”

	Table 4. Case-1 for variable ranges by [3]

	Design Variables
	GA [3]
	SA 
[4]
	PSO  [4]
	PSO 
[23]
	AAA  [23]
	ABC  
[23]
	WOA  [23]
	GWO  [23]
	GWO [6]

	Weight (g)
	3512.6
	3127.71
	3127.70
	3094.8605
	3094.8599
	3094.8599
	3094.8602
	3094.8710
	3094.8626

	b (mm)
	24
	23.7
	23.7
	23.903074
	23.903065
	23.903065
	23.903069
	23.903220
	23.9031

	d1 (mm)
	30
	30
	30
	30
	30
	30
	30
	30
	30

	d2 (mm)
	30
	36.761
	36.763
	30
	30
	30
	30
	30
	30

	Z1
	18
	18
	18
	18
	18
	18
	18
	18
	18

	m (mm)
	2.75
	2.75
	2.75
	2
	2
	2
	2
	2
	2.75

	Active constraints
	-
	1,4
	1,4
	1
	1,3
	1,3
	1,3
	1,3
	1,3

	Function evaluation
	20,000
	2200
	1000
	1169
	4038
	8370
	8444
	8110
	7569




























	Table 5. Comparison between performance of different algorithms for case -1; expanded variable ranges adapted by [4]

	Design Variables
	SA  [4]
	PSO  [4]
	PSO  [23]
	AAA  [23]
	ABC  [23]
	WOA [23]
	GWO [23]
	GWO  [6]

	Weight (g)
	3094.61
	3094.60
	2710.5327
	2710.1604
	2716.9678
	2713.9278
	2710.8550
	2714.1645

	b (mm)
	32
	32
	35
	35
	34.9327
	34.9981
	35
	35

	d1 (mm)
	30
	30
	30
	30
	30
	29.9984
	30
	29.97

	d2 (mm)
	36.756
	36.759
	16.8355
	16.8341
	16.8341
	16.8341
	16.8771
	17.1614

	Z1
	25
	25
	23.2434
	23.2414
	23.2982
	23.2628
	23.2425
	23

	m (mm)
	2
	2
	2
	2
	2
	2
	2
	2

	Active constraints
	1,4
	1,4
	1,4
	1,3,4
	1,3,4
	1,3,4
	1,3,4
	3

	Function evaluation
	2200
	1000
	2425
	8032
	8910
	5328
	8928
	52
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Figure 10. Relationship between gear pair weight and function evaluations for Case-2 “extended range of variables”
























	Table 6.  Case-2 for variable ranges by  [3]

	Design Variables
	GA  
[4]
	SA  
[4]
	PSO  [4]
	PSO 
[23]
	AAA 
[23]
	ABC 
[23]
	WOA 
[23]
	GWO [23]
	GWO  [6]

	Weight (g)
	2993.70
	2993.56
	2993.56
	2958.33961
	2958.3390
	2958.3390
	2958.3391
	2958.3418
	2958.3

	b (mm)
	21.999
	21.997
	21.999
	22.000008
	22
	22
	22.0000007
	22.000038
	22.00384

	d1 (mm)
	30
	30
	30
	30
	30
	30
	30
	30
	30

	d2 (mm)
	36.751
	36.742
	36.768
	30
	30
	30
	30
	30
	30

	Z1
	18
	18
	18
	18
	18
	18
	18
	18
	18

	m (mm)
	2.75
	2.75
	2.75
	2
	2
	2
	2
	2
	2.75

	H (BHN)
	341.46
	350
	338
	321.5813
	400
	300.6048
	397.774
	350.7695
	347.8356

	Active constraints
	4,7
	4,7
	4,7
	2,4
	2,4,6
	2,4,6
	2,4,6
	2,4,6
	2,4,6

	Function evaluation
	6000
	3300
	3000
	8412
	6118
	8700
	8621
	8874
	1990





VI. CONCLUSION AND FUTURE WORK
Literature covered design and optimization of the gear pair of macro and micro geometry, however the former has been related to the tool geometry and it includes basic geometric parameters such as module, face width, number of teeth, helix angle, and lastly addendum modifications. While the latter consists of modification of the gear teeth on the microscales such as tip reliefs and profile crowning which is out of the scope of the paper. The process of optimizing the macro geometry of the gear set has been extensively studied by different researchers and covered comprehensively in this paper as the performance of the gear is much influenced by macro rather than micro geometric specifications. The article also gathers all types of naturally inspired techniques of optimization with its basic work principles. Polymer gears have been reported in terms of materials and optimization in this article. Results recorded by other authors have been reported in this article which unfortunately, most of it depends on varying the parameters of the techniques or statistical analysis to reach the optimal design solution of the gear set. A rough guideline for gear design and optimization has been established to provide the designers and researchers with a flexible farmwork for application. Based on previous studies future aspects recommendations will be:
As the literature focused on steel gears for macro geometry optimization, it is suggested to optimize polymer gear sets with dissimilar materials as polymers have become essential in many industrial sectors for its light weight and lower manufacturing cost. Examining the previously studied optimization techniques on micro geometry whether it is metallic or polymer gears to show how effectively these methods can obtain optimal design. Conclusions have been made previously, but from theoretical 




studies, so it is advisable to include experimental work to connect between academic field, technological and industrial applications. 
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