Journal of Engineering Research
Abstract
In wireless communication systems, the existence of the antenna array back lobe represents a significant source of interference, which causes degradation of the signal-to-interference ratio (SIR), and power loss. In this paper, a novel optimized conical antenna array (O-CONAA) structure is proposed for back lobe cancellation of concentric circular antenna arrays (CCAA). Based on the CAA, It is considered to be made up Of several concentric circular antenna arrays (CCAA) which are placed in the X-Y plane. Firstly a non-optimized CONAA is constructed, by arranging these concentric CAAs with uniform vertical spacing along the Z-axis. Consequently, the CONAA seems to be treated as a combination between uniform CAAs and a linear antenna array (LAA). It has been noted that the CONAA radiation pattern has a back lobe amplitude the same as the main beam amplitude. The O-CONAA structure is suggested as a solution to this problem, which provides back lobe cancellation while maintaining the CONAA pattern characteristics like half power beamwidth (HPBW) side lobe level (SLL). The genetic algorithm(GA) approach is used in the O-CONAA structure to optimize the values of both CONAA inter-element spacing around the perimeter of each circle, and vertical spacing along the Z-axis to generate the desired radiation pattern.
Recommended Citation
H. Nosier, Mohamed E. Nasr, Nessem M. Mahmoud, amr Hussein, Alzahraa
(2023)
"A novel optimized conical antenna array structure for back lobe cancellation of uniform concentric circular antenna arrays,"
Journal of Engineering Research: Vol. 7:
Iss.
5, Article 19.
Available at:
https://digitalcommons.aaru.edu.jo/erjeng/vol7/iss5/19