•  
  •  
 
Information Sciences Letters

Information Sciences Letters

Abstract

Healthcare fields have made substantial use of cybersecurity systems to provide excellent patient safety in many healthcare situations. As dangers increase and hackers work tirelessly to elude law enforcement, cybersecurity has been a rapidly expanding field in the news over the past ten years. Although the initial motivations for conducting cyberattacks have generally remained the same over time, hackers have improved their methods. It is getting harder to identify and stop evolving threats using conventional cybersecurity tools. The development of AI methodologies offers hope for equipping cybersecurity professionals to fend against the ever-evolving threat posed by attackers. Therefore, an artificial intelligence- based Convolutional Neural Network (CNN) is introduced in this paper in which the cyberattacks are detected with more excellent performance. This paper presents unique conditions using the Ant Colony Optimization based Convolutional Neural Network (ACO-CNN) mechanism. This model has been built and supplied collaboratively with a dataset containing samples of web attacks for detecting cyberattacks in the healthcare sector. The results show that the created framework performs better than the modern techniques by detecting cyberattacks more accurately.

Share

COinS