•  
  •  
 
Information Sciences Letters

Information Sciences Letters

Abstract

Classical Lipschitz regularity does not allow to capture possible different oscillating directional pointwise regularity behaviors in coordinate axes of functions f on Rd, d ≥ 2. To overcome this drawback, we use iterated fractional primitives to introduce a notion of multivariate pointwise Lipschitz oscillating regularity. We show a characterization in hyperbolic wavelet bases. As an application, we obtain the fractal print dimension of a given set of multivariate Lipschitz oscillating regularity, from the knowledge of fractional axes oscillating spaces to which f belongs.

Share

COinS