Effat Undergraduate Research Journal
Abstract
In thepastdecade,artificialintelligence(AI)hasbeenonthe rise asatooltobeutilizedacrossallthefieldsavailableintheindustry. Specificallyinthemicroelectronicsfield,exploringthecurrentoptionsof VLSI faultdetectionandtheirtypesiscrucialforadvancementandis importantinidentifyingwhetherthereisroomforimprovementorthe optimumisalreadybeingdone.Therefore,thepurposeofthisresearch is tocompareandcontrastbetweenVLSIfaultdetectionindigitaland analog circuitsusingAI.Techniquestoimproveefficiencysuchastrou- bleshootinginsmallsegmentsratherthanthewholesystemandsome resolutions todrawbacksthataren’tdetectibletohumansliketimingare discussed andresolvedinthispaper.Moreover,somenon-idealitiesand risks likemarginalstabilitywereconsidered.Finally,presentelements that areusedintoday’sfaultdetectioncircuitslikeneuralcontrollers and theANNswerediscussedaswell.Currently,theANNsarethemost utilized toolforfaultdiagnosesanddetection;however,forthecontinu- ation ofthistechnology’sgrowth,developersneedtofindmoreefficient methodstomovepastit.
Recommended Citation
(2022)
"Fault Detection in Analog VLSI Circuits based on Artificial Intelligence,"
Effat Undergraduate Research Journal: Vol. 3:
Iss.
1, Article 7.
Available at:
https://digitalcommons.aaru.edu.jo/eurj/vol3/iss1/7