•  
  •  
 

Effat Undergraduate Research Journal

Authors

Abstract

In thepastdecade,artificialintelligence(AI)hasbeenonthe rise asatooltobeutilizedacrossallthefieldsavailableintheindustry. Specificallyinthemicroelectronicsfield,exploringthecurrentoptionsof VLSI faultdetectionandtheirtypesiscrucialforadvancementandis importantinidentifyingwhetherthereisroomforimprovementorthe optimumisalreadybeingdone.Therefore,thepurposeofthisresearch is tocompareandcontrastbetweenVLSIfaultdetectionindigitaland analog circuitsusingAI.Techniquestoimproveefficiencysuchastrou- bleshootinginsmallsegmentsratherthanthewholesystemandsome resolutions todrawbacksthataren’tdetectibletohumansliketimingare discussed andresolvedinthispaper.Moreover,somenon-idealitiesand risks likemarginalstabilitywereconsidered.Finally,presentelements that areusedintoday’sfaultdetectioncircuitslikeneuralcontrollers and theANNswerediscussedaswell.Currently,theANNsarethemost utilized toolforfaultdiagnosesanddetection;however,forthecontinu- ation ofthistechnology’sgrowth,developersneedtofindmoreefficient methodstomovepastit.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.