Future Engineering Journal


the paper presents an efficient scheme for a Nonlinear PID (NPID) controller to improve the dynamic response of the Electric Vehicle (EV). The objective of the proposed controller is to track accurately the reference speed selected by the driver of the EV. A MATLAB/Simulink model is established and validated for the considered EV to study the system performance. The proposed NPID controller has been investigated by comparing it with the traditional PID controller. The optimal parameters of Both the NPID and PID controllers were obtained using the Harmony Search (HS) optimization technique based on a cost function. The desired rise time, settling time, steady-state error, and overshoot have been taken into account in the cost function. Two tests were performed, the first test was implemented at fixed reference speed while the second one was carried out at a staircase command of reference speed. The simulation results can be summarized as follows: in the first test, the NPID controller reaches the steady-state speed at 38.12 seconds while the PID controller stabilizes at 44.68 seconds. Moreover, the NPID controller has a 0.5% steady-state error however, the PID controller has a 4% steady-state error. Besides, the second test shows that the NPID controller can decrease the root mean square of error by 30.1% compared to the PID controller. Lastly, the proposed NPID controller can enhance EV performance significantly.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.